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Python for Islamic
Astronomy

Python for Islamic Astronomy: Modern Computational Approaches to Hijri
Calendar, Qibla, and Prayer Times responds to the urgent need to improve cal-
culation accuracy and data visualizations in the field of Islamic Astronomy. This
field is becoming increasingly complex, leading to mistakes in determining the
beginning of the Hijri month, Qibla directions, and prayer times. This book
offers a more precise approach by showing how the Python environment can
be tailored for astronomical computations and how the mathematical principles
behind Qiblah determination can be implemented through elegant Python algo-
rithms. The guide provides detailed methodologies for calculating prayer times
with astronomical precision, allowing for accurate scheduling regardless of
global location. The book also delves into the science of moonsighting, helping
readers learn to compute and analyze observation data critical for Islamic cal-
endar determinations. Advanced visualization chapters bring these calculations
to life through practical applications: develop your own Qiblah compass, create
visual representations of the sun’s position during prayer times, and generate
detailed lunar crescent visibility charts to aid in moon-sighting efforts. Perfect
for programmers interested in Islamic Astronomy, religious scholars embrac-
ing technology, or anyone seeking to understand the mathematical foundations
behind these traditional practices, this guide bridges ancient wisdom with
modern computational techniques, making complex astronomical calculations
accessible through the power of Python.

Key Features:

* The first book to provide practical guidance for using Python,
supplemented by an interactive coding website, to solve real-world
problems in the field of Islamic Astronomy.

* Uses the latest and most-trusted methods in Islamic Astronomy,
ensuring all calculations are accurate and based on well-recog-
nized references.

* Includes visualizations that help readers understand key topics like
Qibla direction, prayer time zones, and lunar crescent visibility,
making the content practical and user-friendly.
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Application of
Islamic Astronomy
for Muslim

This book is supplemented by an interactive coding website hosted on a
Google Colab repository. Readers can explore the code used in the compu-
tation and calculation of Islamic Astronomy, observe how it is implemented
within the Colab environment, and adjust the demonstrated code according
to their own variables and real-life situations. Users do not need to rewrite the
code manually from this book; instead, they can simply copy it directly from
the Google Colab repository. Rewriting code often leads to mistakes, and the
more mistakes made, the less enjoyable the exercise becomes; trust me, I speak
from experience. The website contains 6 hyperlinks, which direct the user to
the corresponding chapter. The website can be accessed on bit.ly/pythonforis
lamicastronomy, or using the QR Code given in Figure 1.1.

From this link, user can edit the code. The edited code will be saved on
the user’s own copy of Google Colab and won’t affect the original coding.

Islamic Astronomy, also known as ‘ilm al-hay’ah, refers to the branch of
science developed and practiced within the Islamic world that deals with the
study of celestial bodies and their movements, primarily for religious, calen-
drical, and navigational purposes (Ilyas, 1997). This area of study combines
observational astronomy with Islamic principles, making it a vital area of study
for Muslims. Islamic Astronomy has historically contributed to various fields,
from timekeeping and calendar formation to navigation and the understanding
of celestial events (Yusuf, 2010). Its importance is seen in the precise ways it
influences Muslims’ religious obligations and broader scientific knowledge.

One of the most practical applications of Islamic Astronomy is determin-
ing the exact times for the five daily prayers (Salah), which rely on the sun’s
position in the sky. This ensures that Muslims perform their prayers at the cor-
rect times each day (Abas et al., 2022). In Malaysia, the Department of Islamic
Development Malaysia (JAKIM) publishes detailed prayer timetables every
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FIGURE 1.1 QR code for Google Colab website.

year, calculated using astronomical algorithms and verified through observa-
tion. Tools like the Almanak Falak JAKIM allow users to refer prayer times
specific to the zone (Huda et al., 2014). The Umm al-Qura calendar in Makkah
uses a combination of astronomical data and historical tradition to set prayer
times and official schedules, especially critical for the millions of pilgrims
during Hajj and Umrah (Rubin, 2017). The Muslim Council of Britain pro-
vides detailed prayer timetables for different cities, incorporating high-latitude
adjustments for places like Edinburgh, where sunlight patterns complicate
standard calculations (Ali, 2015).

The Hijri calendar is a lunar calendar in which each month begins with
the sighting of the new crescent moon (hilal). This determination is critical for
establishing the dates of key Islamic events such as Ramadan, Eid al-Fitr, and
Hajj (Ilyas, 1984). Moon sighting activities are regularly held across Muslim-
majority countries. For example, in Indonesia, the Ministry of Religious
Affairs coordinates nationwide rukyah observations, such as those conducted
at the Pelabuhan Ratu Observatory, to verify the start of Ramadan and other
significant months (Wahidi et al., 2019). The State Mufti Department manages
official crescent moon sightings from sites like Bukit Agok Observatory, with
live national broadcasts of Ramadan and Shawwal announcements (Mohd
Nawawi et al., 2024). Morocco is known for using hisab (astronomical calcula-
tions) alongside rukyah to determine the Islamic months, often leading to dif-
ferent Ramadan start dates compared to neighboring countries (Lairgi, 2025).

Muslims must face the Kaaba in Makkah when performing prayers.
Islamic Astronomy provides methods for determining the Qibla direction
accurately from any point on Earth. Historically, this was done using instru-
ments like the astrolabe, and today, with the help of digital compasses and
satellite technology (Faid, Nahwandi, et al., 2022). In recent years, researchers
undertook a measurement project for mosque prayer spaces to ensure they were
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accurately aligned with the Qibla based on updated astronomical and geospa-
tial data (Yildirim et al., 2024). Al-Azhar Mosque, one of the oldest universi-
ties in the Islamic world, underwent a Qibla realignment in 1992 after new
astronomical surveys corrected earlier orientation errors dating back centuries
(Rabbat, 1996). Muslim communities often use smartphone apps (e.g., Muslim
Pro) and Google Earth Qibla services, which apply astronomical algorithms to
pinpoint the Kaaba’s direction from anywhere in the country (Schumm, 2020).

Islamic teachings emphasize observing and responding to celestial events
such as solar and lunar eclipses, which are occasions for special prayers. Islamic
astronomers calculate and predict these events with precision, enabling com-
munities to observe them properly (King, 1993). During the total lunar eclipse
on July 27, 2018, Muslim communities worldwide, including in Saudi Arabia
and Indonesia, performed Salat al-Khusuf (eclipse prayer) and organized
observation sessions. Observatories like Bosscha Observatory in Indonesia
broadcasted the event live, blending scientific outreach with religious obser-
vance (Izzuddin et al., 2022). During the 2019 annular solar eclipse, mosques
across the kingdom held Salat al-Kusuf, and observatories provided live cov-
erage with explanations linking religious practice to astronomical phenomena
(Elmhamdi et al., 2024).

Before the advent of modern navigation tools, Islamic astronomers devel-
oped sophisticated navigation techniques based on celestial bodies. This was
especially crucial for travelers, pilgrims, and maritime traders navigating long
distances across deserts and seas. Muslim sailors and traders navigating the
Indian Ocean between Africa, the Arabian Peninsula, and Southeast Asia
used instruments like the Kamal, a simple device to measure the altitude of
stars, to determine their position and direction. This knowledge was crucial
in facilitating trade routes and pilgrimage journeys for centuries (Niri et al.,
2023). North African caravans traveling across the Sahara to Makkah relied
on astronomical observations, notably the Pole Star (Polaris), to maintain their
route across the desert. During the Ottoman Empire, maritime explorers and
military fleets used Islamic Astronomy-based charts and instruments like the
astrolabe and quadrant to navigate the Mediterranean and Red Sea efficiently
(Faid, Nawawi, et al., 2022).



Why Python
Matters in Islamic
Astronomy

Python is a widely used, interpreted, object-oriented, high-level programming
language with dynamic semantics, designed for general-purpose program-
ming. It is ubiquitous, and many people use Python-powered devices every
day, whether they realize it or not. Python was created by Guido van Rossum
and was first released on February 20, 1991. While you might know the
python as a large snake, the name of the Python programming language actu-
ally comes from an old BBC television comedy sketch series called “Monty
Python’s Flying Circus” (Mehare et al., 2023). One of the great features of
Python is that it is truly the work of one person. Typically, new programming
languages are developed and published by large companies employing many
professionals, and due to copyright regulations, it is very difficult to name
any individuals involved in such projects. Python is an exception (Faid, Mohd
Nawawi, et al., 2024).

Of course, Guido van Rossum did not develop and expand all the com-
ponents of Python by himself. The rapid spread of Python across the globe
is the result of the continuous work of thousands of (very often anonymous)
programmers, testers, users (most of them not IT experts), and enthusiasts,
but it must be said that the initial idea (the seed from which Python sprouted)
came from one person — Guido (Ozgur et al., 2021). Python is maintained
by the Python Software Foundation, an organization and community ded-
icated to developing, improving, expanding, and popularizing the Python
language and its environment. There are billions of lines of code written
in Python, which means nearly unlimited opportunities for code reuse and
learning from well-designed examples. Moreover, there is a large and highly
active Python community, always happy to help (Faid, Nawawi, Saadon, et
al., 2023).

4 DOI: 10.1201/9781003649120-2
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Several factors make Python great for learning:

* It’s easy to learn — The time required to learn Python is shorter
than many other languages, meaning you can start real program-
ming more quickly.

* It’s easy to use for writing new software — Often, it’s possible to
write code faster when using Python.

* It’s easy to obtain, install, and use — Python is free, open-source,
and cross-platform; not all languages can boast that.

Programming skills prepare you for a career in almost any industry and are
essential if you want to pursue more advanced and higher-paying software
development and engineering roles. Python is a programming language that
opens more doors than others. With solid Python knowledge, you can work in
various jobs and industries. And the more you understand Python, the more
you can do in the 21st century. Even if you don’t need it for work, you’ll find it
useful to know (Blank & Deb, 2020).

Python is a great language for science, particularly in astronomy. Various
packages like NumPy, SciPy, Scikit-Image, and Astropy (to name just a few)
are all excellent examples of Python’s suitability for astronomy, and there are
many use cases. [NumPy, Astropy, and SciPy are fiscally sponsored projects
by NumFOCUS; Scikit-Image is an affiliated project.] These tools make it
easier to use Python in various astronomical projects.

For example, the European Southern Observatory (ESO), which operates
the Very Large Telescope (VLT), offers data for download on their site. You
can visit www.eso.org/UserPortal and create a username for their portal. If
you’re looking for data from the SPHERE instrument, you can download full
datasets for any nearby stars with exoplanet or protoplanetary disks. It’s a fan-
tastic and engaging project for any Pythonista to reduce that data and make the
hidden planets or disks visible amid the noise (Rhodes, 2011).

By using the tools offered by NumPy, SciPy, Astropy, Scikit-Image,
and many more in combination, with a little patience and persistence, it’s
possible to analyze vast amounts of available astronomical data to produce
some stunning results. Python plays a significant role in Islamic Astronomy,
particularly in determining prayer times, the Qibla direction, and the begin-
ning of the Hijri months. These aspects are central discussions in Islamic
Astronomy.
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PRAYER TIMES CALCULATION

The determination of prayer times involves using the position of the sun as a ref-
erence to measure the start and end times of each prayer. The position of the sun
after its zenith is used to determine Zuhr, the sun’s shadow for Asr, sunrise and
sunset for Maghrib and Syuruk, while the sun’s light below the horizon is used
for Fajr and Isha (Faid et al., 2019). Python, with its libraries such as NumPy,
SciPy, and Astropy, can be used to perform precise calculations of the sun’s posi-
tion, which is crucial for determining accurate prayer times (Faid et al., 2021).

QIBLA DIRECTION DETERMINATION

The determination of the Qibla direction requires accurate readings of lati-
tude and longitude. Historically, Islamic scholars used the position of the sun
and solar eclipses to determine these coordinates (Faid, Husien, et al., 2016).
Today, GPS provides latitude and longitude, but surveyors and astronomers
still require sun position data to obtain the azimuth direction. Python can be
used to calculate the azimuth angle accurately, incorporating latitude, longi-
tude, and the sun’s position, which is vital for ensuring that the Qibla direction
is correct (Amin, 2018).

DETERMINING THE BEGINNING
OF THE HUURI MONTHS

The beginning of an Islamic month is determined by the visibility of the cres-
cent moon (Shariff et al., 2016). The moon’s visibility depends on its position
relative to the sun, and the calculations involved are more complex than those
for the sun because of the moon’s faster and more dynamic movement influ-
enced by the gravitational forces of the sun and the Earth. Python, through
the use of libraries like Astropy, allows for precise calculations of the moon’s
position, which is essential for determining the new moon and thus the start of
the Hijri month (Muztaba et al., 2023).



Importance of
Accuracy of
Calculation

The precision in calculating the positions of the sun and moon directly impacts
the determination of prayer times, the Qibla direction, and the visibility of the
crescent moon. If these calculations are inaccurate, it could lead to incorrect
prayer times, Qibla direction, or the start of the Islamic month. Therefore,
it is crucial for those in authoritative positions to use accurate calculations.
Public institutions like JAKIM, JUPEM, and the State Mufti Departments in
Malaysia are responsible for producing accurate data, which the public relies
on (Shariff et al., 2017). For example, the Qibla direction of mosques and
suraus must be certified by official surveyors and the Mufti Department to
ensure that the direction used by the local Muslim community is accurate.
Similarly, the release of Prayer Time Tables and the annual Hijri Calendar
involves precise calculations and is usually vetted by the State Falak Council
before being published (Faid, Shariff, et al., 2016).

As the public, they are not burdened with performing these precise calcu-
lations ourselves. Instead, we are encouraged to rely on authoritative sources
for accurate information. However, increasing public awareness and under-
standing of Islamic astronomical calculations can enhance appreciation for
this knowledge and reduce confusion and the spread of misinformation (Faid
et al., 2018). By using Python in Islamic Astronomy, we can harness its power
to perform accurate and efficient calculations, ensuring that the Islamic prac-
tices related to time and direction are observed correctly and consistently
(Faid et al., 2025). Accuracy in Islamic Astronomy is a highly critical aspect,
particularly in determining the new Hijri month (Syazwan Faid et al., 2025).
This is due to several factors that have a direct impact on the religious practices
of Muslims, as well as broader social and economic implications (Wahyuni et
al., 2022).

DOI: 10.1201/9781003649120-3 7
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ACCURATE DETERMINATION
OF RELIGIOUS PRACTICES

The determination of the new Hijri month is crucial as it sets the dates for key
events in the Islamic calendar, such as the beginning of Ramadan, Eid al-Fitr,
and Eid al-Adha. Accuracy in determining the Hijri month ensures that prac-
tices like fasting and the Eid prayer are performed on the correct days. Even a
deviation as small as 0.5 degrees in the moon’s position can lead to differences
in date determination, potentially causing confusion within the community
(Adegoke, 2013, 2017).

SOCIAL AND ECONOMIC IMPACT

Errors in determining the Hijri month can lead to misunderstandings among
Muslims, especially in societies where religious dates play a significant role
in social and economic planning. For instance, a change in the date of Eid
can affect various aspects such as holiday planning, festival preparations, and
related economic activities (Mohd Nawawi et al., 2024).

IMPORTANCE OF MODERN
TECHNOLOGY AND CALCULATIONS

The use of modern technology, such as programming in Python, and advanced
astronomical tools, allows for more accurate and consistent calculations in
determining the Hijri month. These calculations involve various astronomi-
cal factors, such as the positions of the moon, sun, and Earth, as well as other
factors like weather conditions and topography that can affect the visibility of
the new moon (Junaidi, 2022). By employing advanced algorithms and pre-
cise mathematical calculations, the likelihood of errors in determining the
Hijri month is significantly reduced. This accuracy is essential to ensure that
Muslims worldwide can practice their faith with full confidence that the dates
they observe are correct and valid (Gharaybeh, 2025).
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COMPLEXITY OF CALCULATIONS

The process of calculating the new Hijri month is highly complex, involving
hundreds of mathematical formulas and thousands of variables. Every aspect
must be meticulously calculated to ensure accurate results. For example, fac-
tors such as the moon’s altitude angle, the distance between the moon and
the sun, and the times of sunset and moonset all play crucial roles in these
calculations. Any error in these calculations can lead to incorrect date deter-
mination, which not only affects religious practices but can also cause confu-
sion and division among Muslims (Faid, Shariff, et al., 2024; Meeus, 1991).
Therefore, accuracy in Islamic Astronomy is not only necessary to maintain
the correctness of religious practices and rituals but also to ensure social har-
mony and stability within the community (Faid, Nawawi, et al., 2024). By
leveraging technology and precise scientific approaches, Muslims can observe
their religious practices with greater confidence and alignment with the teach-
ings of their faith. With the advancement of technology, the use of astronomi-
cal calculation software and programming algorithms has greatly facilitated
this process, ensuring that each calculation is done accurately and efficiently.
However, even with the aid of technology, expertise and in-depth knowledge
of Islamic Astronomy are still required to ensure accuracy in determining the
new Hijri month (Rasyid et al., 2024).

Python can be utilized to model and visualize astronomical data in a
highly efficient and accurate manner. Below are some specific applications of
Python in the field of Islamic Astronomy (Falak).

CALCULATION AND VISUALIZATION
OF CRESCENT MOON POSITION

Python can be used to accurately calculate the position of the moon each night.
By applying precise astronomical formulas, it is possible to determine the time
and location where the crescent moon will be visible. Python also allows us to
plot the moon’s movement in the form of graphs or maps, making it easier for
astronomers to predict and confirm the visibility of the crescent moon. This is
crucial for determining the start of the Hijri month and Islamic celebrations
like Ramadan and Shawal (Rasyid et al., 2023).
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CALCULATION AND VISUALIZATION
OF PRAYER TIMES

Python can be employed to calculate prayer times based on the sun’s posi-
tion. By inputting geographical location data, Python can calculate sunrise,
solar noon, sunset, and other critical times needed to determine prayer times.
Additionally, Python can plot the sun’s position and the brightness of the sky
throughout the day. This helps astronomers and the general public understand
the changes in prayer times throughout the year, including variations due to
seasonal changes and location (Razzak, 2024).

CALCULATION OF QIBLA DIRECTION

Python can be used to calculate the sun’s shadow trajectory to determine the
Qibla direction. By calculating the sun’s position at a specific time, we can
determine the direction of the shadow that will indicate the accurate Qibla
direction. This is particularly useful for ensuring that the prayer direction is
correct, especially in places where visual guidance might not be available.
Python can generate maps or graphs showing the Qibla direction for various
locations around the world (Asrin et al., 2018). By using Python, we can sim-
plify and expedite calculation processes that would otherwise require a signifi-
cant amount of time and effort if done manually. Python not only simplifies
the calculation process but also ensures that the results are accurate and reli-
able. This makes Python an invaluable tool in the field of Islamic Astronomy
(Falak) and Islamic Astronomy at large (Al-Rajab et al., 2023; Loucif et al.,
2024).
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GETTING STARTED WITH PYTHON

Google Colaboratory, commonly known as Google Colab, is a free cloud-based
platform provided by Google that allows users to write and execute Python
code through the browser. It is especially popular among data scientists, edu-
cators, and researchers for its simplicity, power, and seamless integration with
Google Drive. No installation is required, just a Google account.

With Google Colab, you can:

* Write and run Python code instantly.

» Use pre-installed scientific libraries like NumPy, Pandas, Matplotlib,
and more.

* Collaborate with others in real time.

* Save and share notebooks easily through Google Drive.

This makes it a convenient tool for projects such as calculating Islamic
Astronomy matter using Python.

DOI: 10.1201/9781003649120-4 1"
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USING PYTHON FOR PRAYER TIME
CALCULATIONS IN GOOGLE COLAB

You can use Google Colab to run Python scripts that calculate prayer times
based on astronomical data and geographical coordinates. Here’s how to get
started:

Step 1: Access Google Colab

Go to https://colab.research.google.com. You'll need to sign in with
your Google account.

Step 2: Create a New Notebook
* Click on “File” > “New Notebook”.
* A new notebook with a Python environment will open in your

browser.
Step 3: Install dependencies or libraries and start coding!

BASIS OF PYTHON OPERATION

Python can handle basic arithmetic just like a scientific calculator. Below are
the key operations:

Addition

a = 10
b =5

result = a + b

print (result) # Output: 15

Subtraction
a = 10
b =25
result = a - b

print (result) # Output: 5


https://colab.research.google.com
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Multiplication
a = 10
b =25
result = a * b

print (result) # Output: 50

Division
a = 10
b =5

result = a / b
print (result) # Output: 2.0

Integer Division

a = 10

b =3

result = a // b

print (result) # Output: 3

Modulus

a = 10

b =3

result = a $ b

print (result) # Output: 1

Exponentiation
a = 2
b =23
result = a ** b

print (result) # Output: 8

To use trigonometric functions, we import the math module. Python’s math
functions work in radians, not degrees.
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Importing Math Module

import math

Convert Degrees to Radians

degrees 90
radians = math.radians (degrees)
print (radians) # Output: 1.5707963267948966

Trigonometric Functions

Sine (sin)

angle = 30
result = math.sin(math.radians (angle))
print (result) # Output: 0.49999999999999994

Cosine (cos)

angle = 60
result = math.cos (math.radians (angle))
print (result) # Output: 0.5000000000000001

Tangent (tan)

angle = 45
result = math.tan(math.radians (angle))
print (result) # Output: 0.9999999999999999

Inverse Tangent (Arctangent/atan)

The atan() function returns the angle (in radians) whose tangent is the given
number. To convert it into degrees, use math.degrees():

x = 1 # tan(angle) =1

angle rad = math.atan(x)

angle deg = math.degrees(angle rad)

print (angle rad) # Output: 0.7853981633974483
(radians)

print (angle deg) # Output: 45.0 (degrees)


http://www.math.sin
http://www.math.cos
http://www.math.tan
http://www.math.atan
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This is especially useful in triangle calculations, astronomy, and physics
when determining angles based on known side ratios.

BASIC CONDITIONAL
STATEMENTS IN PYTHON

Conditional statements allow your program to make decisions based on certain
conditions. This is useful in nearly all practical applications.

The if Statement

The if statement executes a block of code only if a specified condition is true.
temperature = 30

if temperature > 25:
print (“It’s a hot day.”)

The else Statement

The else block runs when the if condition is false.

temperature = 20
if temperature > 25:

print (“It’s a hot day.”)
else:

print (“It’s a nice day.”)

Using or in Conditions

The or keyword checks if at least one of multiple conditions is true.

day = “Sunday”
is_holiday = True

if day == “Sunday” or is_holiday:
print (“You can rest today.”)
else:

print (*It’s a working day.”)
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Combined Example

Here is a real-world style example:

score = 80
if score >= 90:

print (“Excellent”)
elif score >= 70:

print (“Good job”)
else:

print (“Keep trying”)

Explanation

* If the score is 90 or more — print “Excellent”
 If the score is 70 or more (but less than 90) — print “Good job”
» If the score is less than 70 — print “Keep trying”

Output

Good job

Another Example Using or

score = 60
if score < 70 or score > 100:
print (“Score needs review”)
else:
print (“Score is acceptable”)

Output

Score needs review

These basic control structures allow your Python programs to make decisions
and react to different inputs. This shows how Python checks conditions in
order. It stops at the first condition that is True. These if, else, and or statements
give your Python program logic, allowing it to behave differently based on
input or conditions. This is essential in automation, data filtering, simulations,

and more.
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print() in Python

The print() function is used to display information or output on the screen. It is
one of the most basic and commonly used functions in Python programming.

print (“Welcome to the world of Python!”)

Output

Welcome to the world of Python!
You can also print numbers or the result of calculations:

print (5 + 3)

Output

The print() function is essential for checking values, debugging, and interact-
ing with users. Sometimes, you want to print a sentence that includes variable
values, such as a person’s name or age. In Python, this is made easier and
cleaner with formatted strings, also called f-strings.

name = “Aminah”
age = 18
print (£”My name is {name} and I am {age} years old.”)

Output

My name is Aminah and I am 18 years old.

In this example, the f before the quotation mark tells Python to treat the string
as a formatted string. Inside the curly braces {}, Python will insert the value
of the variable. You can even include calculations:

length = 5
width = 3
print (f”The area is {length * width} square units.”)
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Output

The area is 15 square units.

Formatted strings make your code shorter, cleaner, and easier to understand,
especially when combining text and values. Sometimes you want to control
the number of decimal places shown. You can use format specifiers like :.2f to
round to 2 decimal places.

azimuth kiblat = 292.347182
print (£”Azimuth Kiblat: {azimuth kiblat:.2£f}")

Output

Azimuth Kiblat: 292.35
In {azimuth_kiblat:.2f}:

» : starts the format
e 2f means 2 decimal places in floating-point format

This is very useful in math, geography, and science applications.

CONVERTING DECIMAL DEGREES TO
DEGREES, MINUTES, AND SECONDS

In many fields such as geography, surveying, and navigation, angles are often
represented not just in decimal degrees (e.g., 292.35°) but in a more traditional
format: Degrees, Minutes, and Seconds (DMS). While decimal degrees are
easier for calculations, DMS format is more readable and commonly used in
GPS coordinates, navigation systems, and official land records.

Given a decimal degree value:

1. Degrees: The whole number part of the decimal degree

2. Minutes: Multiply the decimal part by 60, then take the whole
number

3. Seconds: Multiply the remaining decimal by 60 again
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Example: Convert 292.35° to DMS

1. Degrees = 292

2. Decimal part = 0.35

3. Minutes = 0.35 x 60 = 21.0 — 21 minutes
4. Seconds = 0.0 x 60 = 0 — 0 seconds

Final Answer
292.350=2920 21’ (0"292.35MNcirc = 292Mcirc\ 21\ 07292.350=2920 21 ()"

Here is a Python script that performs this conversion:

decimal_degree = 292.35

# Step 1: Get whole degrees

degrees = int (decimal degree)

# Step 2: Get the decimal part and convert to minutes
decimal part = decimal degree - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to seconds
seconds = round((minutes total - minutes) * 60)

print (£ {decimal degree}® = {degrees}° {minutes}’
{seconds}"")

Output

292.35° = 292° 21' 0"

This method is useful for displaying locations and angles in a standardized,
human-friendly format.

INSTALLING PYTHON
PACKAGES WITH PIP

As you begin writing Python programs, you will often need to use additional
tools, libraries, or frameworks that are not included in Python by default.
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These tools are called packages. Python provides a powerful command-line
tool called pip to help you install and manage these packages easily.

What Is pip?

pip stands for “Pip Installs Packages”. It is the official package installer for
Python.
With pip, you can:

* Install new Python libraries (like numpy, matplotlib, flask)
* Upgrade packages

* Uninstall packages

* Check what packages are installed

Installing a Package Using pip

You can install a Python package from the internet using this simple command:
pip install package name

Example

To install requests, a popular package for HTTP:

pip install requests

Listing Installed Packages

To view all packages currently installed:
pip list

This will show the name and version of each package. pip is a tool for install-
ing and managing Python packages. You can install, upgrade, and remove
packages easily using simple commands. pip connects to the Python Package
Index (PyPI) to download packages from the internet. Learning to use pip is
essential for working with real-world Python projects.
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WORKING WITH DATES AND TIMES IN
PYTHON, THE DATETIME MODULE

In many real-world programs, especially those involving calendars, logs,
astronomical events, or scheduling, you need to work with dates and times.
Python makes this easy through a built-in module called datetime.

The datetime module allows you to:

* Create and manipulate dates and times

» Extract day, month, year, hour, minute, etc.

» Perform date arithmetic (e.g., add days, subtract dates)
» Format dates into readable strings

Importing the Datetime Module

To use the datetime features, you first need to import it:
from datetime import datetime

This line imports the datetime class from the datetime module.

Creating a Specific Date

You can define a date and time using the datetime() constructor:
date = datetime (2024, 1, 14)

This creates a datetime object representing:

* Year: 2024
e Month: January (1)
* Day: 14

By default, the time is set to midnight (00:00:00) if not specified.
You can also include the time:

date = datetime (2024, 1, 14, 15, 30)

This means 14 January 2024, at 3:30 PM.
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Accessing Date Components

Once a datetime object is created, you can access parts of it:
print (date.year) # 2024
print (date.month) # 1
print (date.day) # 14

You can also get the day of the week or day of the year:

print (date.weekday()) # 6 (Sunday; Monday is 0)
print (date.timetuple() .tm yday) # 14 (14th day of the
year)

Why Is This Useful?

Handling dates and times accurately is essential in:

e Astronomical calculations (like Qibla direction)
* Logging timestamps in applications

* Scheduling tasks or sending reminders

* Managing calendar events

Loop

A loop in programming is used to repeat a set of instructions if a certain con-
dition is true. Loops are useful when we want to:

* Repeat a task many times
» Search for a value
* Simulate continuous or time-based processes

Python provides two main types of loops:

 for loop — used when you know how many times you want to repeat
» while loop — used when you want to repeat until a condition is met

A while loop continues executing the code inside it as long as the condition
is true.

while condition:
# do something
If the condition becomes false, the loop stops.


http://www.date.year
http://www.date.month
http://www.date.day
http://www.date.weekday
http://www.date.timetuple
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Example 1: Simple Counter

count = 0
while count < 5:

print (“Counting:”, count)
count += 1
Counting:
Counting:
Counting:
Counting:
Counting:

B W NP O

Why Use while?

Use while when:

* You don’t know how many times the loop should run.
* You’re waiting for a condition to become true.

Example

Write a loop that prints numbers until the square of the number is greater than

100.
python

n =1

while True:
print (n)

if n *n > 100:
break

n +=1

Summary

» while loops are perfect for conditions with unknown repetitions.

* Always ensure there’s a way to exit the loop.

* They’re useful for simulations, astronomy calculations, and search-
based problems.
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USING SKYFIELD

Skyfield is a Python library designed to calculate the positions of stars, plan-
ets, and satellites orbiting the Earth. Its results are expected to align with
the positions generated by the United States Naval Observatory and their
Astronomical Almanac within 0.0005 arcseconds (half a milli-arcsecond, or
mas). Skyfield is written entirely in pure Python and can be installed with-
out any compilation, making it accessible for various Python environments.
It supports Python versions 2.6, 2.7, and 3, with NumPy as its only binary
dependency. NumPy is a fundamental package for scientific computing with
Python, and its vector operations make Skyfield efficient. Before Skyfield was
developed, an older version known as PyEphem was used. Skyfield builds on
the capabilities of PyEphem, offering more accurate and modern astronomical
calculations (Faid, Mohd Nawawi, et al., 2023; Faid, Nawawi, & Saadon, 2023;
Faid, Nawawi, Wahab, et al., 2023).

PyEphem uses popular astronomical calculation techniques derived
from Jean Meeus’s Astronomical Algorithms, such as the TAU 1980 model
of Earth’s nutation and the VSOP87 planetary theory. These techniques are
still employed by various authoritative bodies around the world (Holwerda et
al., 2016). PyEphem offers accuracy up to 1 arcsecond, which is sufficient
for calculating lunar and solar data. However, for new projects, the Skyfield
library should be prioritized over PyEphem. Its modern design encourages
better Python coding practices and utilizes NumPy to accelerate calcula-
tions. PyEphem’s reliance on C libraries often results in frustrating installa-
tion issues. If the Python Package Index (PyPI) doesn’t have a wheel for your
system, you would need a C compiler and a Python development environment
to install PyEphem.

Another drawback of PyEphem is its handling of angular units, which
can be confusing. The library tries to be clever by interpreting string inputs
like ‘1.23” as degrees of declination (or hours, when setting the right ascen-
sion), but floating-point inputs like 1.23 are assumed to be in radians. The
angles returned by PyEphem add to the confusion: when printed, they display
in degrees, but performing arithmetic on them reveals that they are in radi-
ans. This leads to significant confusion and makes the code harder to read,
but fixing it would break existing programs that rely on PyEphem. Moreover,
PyEphem’s compute () method modifies its objects in place rather than return-
ing a result. While this reflects how the underlying C library operates, it makes
using compute () in list comprehensions difficult, you end up with a list of
None objects. Therefore, in this context, Skyfield will be used for calculat-
ing lunar and solar data. Skyfield’s advantages, such as modern design, better
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integration with Python, and ease of use, make it a superior choice for astro-
nomical calculations in contemporary projects. Skyfield is a modern Python
library that makes it easy to compute positions of planets and other celes-
tial objects using high-precision data from NASA’s Jet Propulsion Laboratory
(JPL). This guide explains how to install and use the DE440s ephemeris,
which contains positional data for the solar system.

Step 1: Install the Skyfield Library

To begin, install the Skyfield library in Google Colab or Jupyter Notebook. In
a new cell, type the following and press Shift + Enter:

lpip install skyfield

This will install the core Skyfield library, which is needed to perform astro-
nomical computations.

Step 2: Understand What an Ephemeris Is

An ephemeris is a table or dataset that provides the positions of celestial
objects at regular intervals. Skyfield uses ephemerides published by NASA
JPL to calculate accurate positions of planets and the moon. For this exam-
ple, we will use DE440s, a compact but high-accuracy ephemeris suitable for
many applications.

Step 3: Load the Ephemeris DE440s

Next, we will load the DE440s ephemeris using Skyfield. Type the following
code into a new cell:

from skyfield.api import load

# Load the time scale

ts = load.timescale ()

# Load the ephemeris data (DE440s) from the internet
planets = load(‘'de440s.bsp’)

load.timescale() prepares the time system used in calculations. load(‘de440s.b
sp’) downloads and loads the DE440s ephemeris file. This file will be down-
loaded from the internet the first time you run the code. Make sure your inter-
net connection is stable.


http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.de440s.bsp
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Step 4: Verify Successful Loading

Once the ephemeris file is downloaded, Skyfield will store it locally (or in the
Colab session temporarily). If successful, no error will be shown, and you can
now access planetary positions like this:

earth = planets[‘earth’]
mars = planets[‘mars’]



Qiblah Calculation
Using Python

The calculation of the Qibla direction is based on three points of location. The
first is the location of the Kaaba, which is located at 21.4225 North, 39.8262
East. The second location is the calculated position of the observer. The third
point is the north pole, where it acts as the axis for the angle between Kaaba
and the calculated position. Therefore, the formula for the Qibla direction
toward the Kaaba from the calculated position is,

AL = (’ILocation - ;LKaabah) Equation 5.1

Al is the formula for calculating the distance from the longitude of the Kaaba
to the longitude of the place for a location located in the east longitude, which
can be obtained by calculating the difference in the values of the two longi-
tudes. Then,

A =sinAA Equation 5.2
B=cos ((pLucariun ) X tan((p[(aubah ) Equation 5.3
C=5InQ; ) 41i0n X COS AL Equation 5.4
D=4 i

%B _ C) Equation 5.5

Then the Qibla Direction (8 ) is calculated using the formula,

0 =Tan™' (D) Equation 5.6
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The formula for Qibla Calculation above can only be used for locations in
Southeast Asia. This is because the calculation formula for calculating (A))
only considers conditions when a location is in the east longitude which has a
value greater than the longitude of the Kaaba. To make the formula for calcu-
lating the direction of the Qibla can be used in all locations in the east and west
longitudes, the distance from the longitude of the Kaaba to the longitude of the
place (A)) is calculated using the following formula:

dev = abs (A peation — Mcaavan ) Equation 5.7

. . 360 —dev,if dev >180 .
Distance between Longitude, AA = Equation 5.8
dev,if dev <180

The value of location longitude in the formula is positive if the location is in
east longitude, and it is negative if the location is in west longitude.

In the Universal Qibla Direction Calculation, the reference value of the
Qibla direction (8 ) is not always from North to West. However, it can vary
depending on the Qibla direction value (0 ) and the Longitude of the Place
(Aipcation )- To find out the reference of Qibla direction, use the following
provisions:

UB if 0 >0and Xy, piion > Akaaban
ur if 0 >0and Xy grion < Aaaban
UB if 0 >0and 4, <Oandc 2180
ur if 0 >0and 4,,,,,;,, <0andc <180
SB if @ <0and A, 4100 > Maaban
ST if 0 <0and Xy, eqrion < Akaaba
SB if @ <0and A, <0andc>180
ST if @ <0and 4, <0andc <180

Arah Mata AnginKiblat =

ocation

ocation

“UB” is a statement that the Qibla direction uses a reference from the
north to the west.

“SB” is a statement that the Qibla direction uses a reference from the
south to the west.

“UT” is a statement that the Qibla direction uses a reference from the
north to the east.

“ST” is a statement that the Qibla direction uses a reference from the
south to the east.
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The Azimuth of Qibla formula also varies depending on the reference of Qibla
Direction value (0 ). To find out the Azimuth of Qibla value, use the following
provisions:

360—60 ifUB

. . 180—6 if SB
Azimuth Kiblat =
ifuT

180+6 if ST

QIBLA CALCULATION

Exercise 1

Determine the Qibla direction of Penang, which has geographical latitude of
5.2632 North and 100.4846 East. The Qaabah geographical latitude is 21.4225
North, longitude is 39.8262 East. First, determine the variables, which are
written in Python as,

¢_Location = 5.2632

A_Location = 100.4846

¢_Kaabah = 21.4225

A_Kaabah = 39.8262

Difference Longitude = (A_Location-A_Kaabah )

Second, perform the calculation. Using the above formula, the calculation can
be written in Python as
In Python, this is written as

import math
A = math.sin(math.radians (abs (Difference_Longitude)))

To confirm the result of A, write in Python

print (A)
0.8717137230643722

Next, to calculate B to D, in Python is written as,

B = math.cos(math.radians (¢_Location))*math.tan(math.r
adians (¢_Kaabah))


http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
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print (B)

0.3906945822201198

C = math.sin(math.radians (¢_Location)) *math.cos (math.r
adians (Difference Longitude))

print (C)

0.0449496276198435

D = A/ ((B-C))

print (D)

2.5212623104570837

The direction of the Qibla 0 is calculated in Python as

0 = math.degrees (math.atan (D))
print (0)
68.36540021170762

The direction of the Qibla does not necessarily translate to the azimuth of
the Qibla based on the magnetic compass. Our phone determines the azimuth
based on the reference of the magnetic compass. Therefore, a minor computa-
tion needs to be added to determine the azimuth of the Qibla. First, correction
of the difference in longitude based on Equation 5.8, written in Python as,

#Determine the Azimuth of the Qibla
if Difference Longitude > 180:
delta A = 360 - Difference Longitude
else:
delta A = Difference Longitude
print (delta A )
60.6584

Then, the quadrant of the calculated user geographical location, with Kaaba as
the center of the quadrant, in Python,

if 6 > 0:
if A Location > A Kaabah:
quadrant = “UB” # Utara Barat
elif A Location <= A Kaabah:
quadrant = “UT” # Utara Timur

elif A Location < 0:
if ¢ >= 180:
quadrant = “UB”
else:
quadrant = “UT”


http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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elif 6 < 0:
if A _Location > A Kaabah:
quadrant = “SB” # Selatan Barat
elif A Location <= A_Kaabah:

quadrant = “ST” # Selatan Timur
elif A Location < 0:
if ¢ >= 180:
quadrant = “SB”
else:
quadrant = “ST”

print (quadrant)
UB

If the quadrant is UB, meaning Utara-Barat in Malay or Northwest in English.
This means that the Azimuth of the Qibla is located at the Northwest from the
computed location. To convert from Qibla direction to Qibla azimuth, written
in Python

if quadrant == “UB”:
azimuth kiblat = 360 - 0

elif quadrant == “SB”:
azimuth kiblat = 180 - 0

elif quadrant == “UT”:
azimuth kiblat = 0

elif quadrant == “ST”:

azimuth kiblat = 180 + 0
print (azimuth kiblat)
291.63459978829235

Therefore, the azimuth of the Qibla is 291.63 degree. To convert the result in
degree,

# To Convert in Degree Form

degrees = int (azimuth kiblat)

decimal part = azimuth kiblat - degrees
minutes_total = decimal part * 60
minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to
seconds

seconds = round((minutes_ total - minutes) * 60)

print (£” {azimuth kiblat}® = {degrees}° {minutes}’

{seconds}"")

291.63459978829235° = 291° 38" 5"
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Finally, to print the result in a text

print (£’ The azimuth of the Qibla for Location with
coordinates {¢ Location} N Latitude, {A Location}
Longitude, is {azimuth kiblat:0.2f}")

The azimuth of the Qibla for Location with coordinates
5.2632 Latitude, 100.4846 Longitude, is 291.63

Exercise 2

Determine the Qibla direction of a location that has geographical latitude of
1.21 South and 108.411 East. Use the coding from the Google Colab website
to generate the azimuth.

Exercise 3

Determine the Qibla direction for the city of Edinburgh, which has geographi-
cal latitude of 55.9533° North and 3.1883° West. This exercise is not available
on the Google Colab website, meaning you need to make your own, based on
the example provided.

Exercise 4

Calculate the azimuth of the Qibla for the city of Apia in Samoa with geo-
graphical latitude of 13.833 South and geographical longitude of 171.75 West.

Exercise 5

Calculate the azimuth of the Qibla for the city of Washington, DC, in the USA
with geographical latitude of 38.904722 North and geographical longitude of
77.016389 West.



Istiwa’ A'zam and
Rashdul Qibla

Istiwa’ A‘zam refers to the astronomical event when the sun is directly above
the Kaaba in Makkah. During this moment, the shadow of any vertical object
anywhere on Earth points directly away from the Kaaba, making it one of
the most accurate methods for determining the Qibla (prayer direction). This
phenomenon is not affected by Earth’s magnetic field, unlike compass-based
Qibla methods, making it especially reliable.

Istiwa’ A‘zam happens twice a year, when the apparent path of the sun
crosses the exact latitude of the Kaaba, which occurs on 28th May and 15th
July approximately. On these dates, the sun passes directly overhead the
Kaaba, around 12:16 p.m. (Saudi time).

At the time of Istiwa’ A‘zam: The sun is directly over the Kaaba. A vertical
stick or object will cast a shadow that points exactly in the opposite direction
of the Qibla. This method is free from magnetic disturbances, unlike a com-
pass. Thus, shadows on these dates provide a natural, accurate Qibla direction,
especially for mosques or homes without modern tools.

However, since Istiwa’ A‘zam only occurs twice a year, it is not always
practical for everyday or long-term Qibla alignment. For this reason, Muslims
use Rashdul Qibla, which refers to the general calculation of the Qibla direction
using sun shadow. Rashdul Qibla refers to the determination of the Qibla direc-
tion using the sun’s position and the direction of its shadow. When the sun’s
azimuth matches the azimuth of the Qibla, the shadow of any upright object
will point directly opposite the Kaaba, effectively giving an accurate Qibla
direction. This moment can be calculated for any location in the world, not just
during the special events of Istiwa’ A’zam (when the sun is directly above the
Kaaba). Thus, Rashdul Qibla can be used on many dates throughout the year.

Modern tools like mobile compasses often suffer from magnetic interfer-
ence, leading to significant inaccuracies, up to 20° in some cases. This could
result in the prayer direction being off by over 1000 km from the Kaaba. In
contrast, the sun’s position can be precisely calculated using astronomical
algorithms and ephemeris data. This makes Rashdul Qibla:
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* Independent of magnetic errors.
* Applicable worldwide.
» Simple to verify using natural observation.

While Istiwa’ A’zam only happens twice a year (around 28 May and 15 July),
Rashdul Qibla can be calculated for any day using the method of finding when
the sun’s azimuth equals the Qibla azimuth for a given location. The position of
the sun can be accurately calculated due to constant observation by the astron-
omer and improvement in ephemeris calculation by the astrometric researcher.
The calculation of the time when the sun shadow is facing the Qibla is as fol-
lows. First step, calculate the first auxiliary angle to get the value of the sun’s
hour angle with the following formula:

1
U=tan"' - Equation 6.1
tan—Ox SO, cation

then calculate the second auxiliary angle with the following formula

tan (pLocatian

After the two auxiliary angles are obtained, then calculate the sun’s hour angle
using the following provisions:

—(T-U)+U,ifU>0 ,
t_HMS)= /15 Equation 6.3

T-U=cos ' (M] Equation 6.2

IT-U|+U.ifU<0

add the sun’s hour angle (in hours) by 12 o’clock to get the solar time of Rashdul
Qibla:

R=12+t_HMS Equation 6.4

Finally, the Rashdul Qibla time according to local mean time can be obtained
using the following formula:

TZx15-4, .
R—E0T+%,UTZ >0
Rashd alQibla Meantime =

R—EoT — |TZ x 15| B |}”location|

15

JfTZ <0

Equation 6.5
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Where 6 is the Qibla direction, as calculated from the previous chapter. TZ
is Time Zone of the location. 6 is sun declination. EoT is Equation of Time.
The formula of Equation of Time is complex and time consuming.

EQUATION OF TIME

The Equation of Time explains the difference between:

Solar Time — time based on the sun’s actual position in the sky (what
a sundial shows)
Clock Time — time shown by regular clocks (mean time)

This difference can be up to £16 minutes. It changes every day of the year.

Solar noon (when the sun is at its highest point) is not always exactly
at 12:00 PM.
The Equation of Time helps explain why the sun sometimes appears
early or late.

TWO CAUSES OF THE DIFFERENCE

. Earth’s orbit is elliptical

» Earth moves faster when close to the sun (January)
» Earth moves slower when farther (July)

. Earth’s axis is tilted

» The tilt (23.44°) changes the sun’s path across the sky through-
out the year

WHY DOES IT MATTER?

Astronomy — correcting solar positions
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* Sundials — to adjust for real sun time

* Islamic Prayer Times — calculating accurate Zuhur and other solar-
based times

* Navigation — aligning maps and sun angles

SIMPLE DEFINITION

Equation of Time is equal to Solar time minus clock time. If EoT is positive,
the sun is behind the clock. If EoT is negative, the sun is ahead of the clock

CALCULATION EQUATION OF TIME

There are several Python libraries that are able to calculate the Equation of
Time. An example is pvlib. Pvlib requires installation from pip.

pip install pvlib

Once installed, pvlib only requires information of the day of the year. For
example, to calculate the Equation of Time on January 14, 2024.

import pvlib

from datetime import datetime

import math

# define the date

date = datetime (2024, 1, 14)

# calculate the day of the year
day of year = date.timetuple().tm yday

Then, to determine the result of the Equation of Time,
EoT = pvlib.solarposition.equation of time pvcdrom(
day of year) / 60
print (f”Equation of Time on date {date} is {EoT}”)
Equation of Time on date 2024-01-14 00:00:00 is
-0.14995874998914036

This Equation of Time is in decimal format, to convert as hour, minute, second.

# To Convert in Degree Form


http://www.pvlib.solarposition.equation_of_time_pvcdrom
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degrees = int (EoT)

decimal part = EoT - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to
seconds

seconds = round((minutes total - minutes) * 60)

print (£7{EoT}° = {degrees}®° {minutes}’ {seconds}"”)
-0.14995874998914036° = 0° -8 -60"

The result is negative 8 minutes and 60 seconds. This means that the sun posi-
tion is located ahead of the clock.

Exercise 1

Determine the Equation of Time for the date 26 May 2025.
Install the required libraries.

pip install pvlib
Input the date into Python variables.

Year = 2025
Month = 5
Day = 26

Input the date into the pvlib library

import pvlib

from datetime import datetime

import math

# define the date

date = datetime(Year, Month, Day)

# calculate the day of the year
day of year = date.timetuple().tm yday

Input compute the EoT.

EoT = pvlib.solarposition.equation of tim
e pvcdrom(day of year) / 60
print (f”Equation of Time on date {date} is {EoT}”)


http://www.pvlib.solarposition.equation_of_time_pvcdrom
http://www.pvlib.solarposition.equation_of_time_pvcdrom
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Equation of Time on date 2025-05-26 00:00:00 is
0.05194889980865643

Convert to hour.

# To Convert in Degree Form

degrees = int (EoT)

decimal part = EoT - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to
seconds

seconds = round((minutes total - minutes) * 60)

print (£7{EoT}° = {degrees}®° {minutes}’ {seconds}"”)
0.05194889980865643° = 0° 3" 7"

The Equation of Time during 26 May 2025 is 3 minutes 7 second positive.

SUN DECLINATION

The sun declination can be calculated using the Skyfield Library. First, the
Skyfield library needs to be installed.

pip install skyfield

Skyfield requires some information to operate; it requires general import
of which Skyfield function the user want to use; the ephemeris, observation
object, location of the user. First, the general import of the Skyfield function.
For this case, we want to use the load function, to load ephemeris data and N,
S, W, E to load geographical direction data, and wgs84 to load earth geographi-
cal location data. In Python this is written as,

from skyfield.api import load
from skyfield.api import N, S, E, W, wgs84

Next, from the load function, determine which ephemeris and target that is
going to be used. In this case, ephemeris 440s is used due to its small size
and accuracy. Observation target is earth and sun, since this calculation only
involves these two objects. In Python this is written as


http://www.skyfield.api
http://www.skyfield.api
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ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Then, Skyfield requires location input to calculate the sun position. Let’s say
we calculate from the position of Kuala Lumpur, Malaysia, with coordinates of
3.1319° N, 101.6841° E, during the date of 14 October 2025.

name city = “Kuala Lumpur”
lat location = 3.1319

long location = 101.6841
year = 2025

month = 10

day = 14

Next is to give the information to Skyfield user location. In this case, the user
is from earth and calculation is computed on lat_location and long_location
coordinates.

kuala lumpur = earth + wgs84.latlon(lat location,
long location, elevation m=0)

Then, input the date of the calculated observation, from the computed position
to the targeted position. The computed position is kuala_lumpur, while the
targeted position is sun. The code, written in Python as

astro = kuala lumpur.at (ts.utc(year, month, day)).
observe (sun)

astro means that the input is in astrometric position of the sun. To convert into
apparent position, as observed by the observer at kuala_lumpur, is;

app = astro.apparent ()

From this app data, we can calculate the right ascension, declination, and dis-
tance of the sun, as observed from earth. To determine the declination of the
sun using Skyfield.

app = astro.apparent ()
ra_dec,dec_app,d app = app.radec()
print (dec_app)

-08deg 01’ 18.7"

Declination of the sun at Kuala Lumpur on 14 October 2025 is —08° 01’ 18.7”.


http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.kuala_lumpur.at
http://www.ts.utc
http://www.app.radec
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Exercise 2

Determine sun declination at Cape Town South Africa, during 26 May 2025,
where it has a time zone of UTC/GMT +2 hours.
Install skyfield library

pip install skyfield
Import Necessary Function

from skyfield.api import load
from skyfield.api import N, S, E, W, wgs84

Load Ephemeris Data and Planet Objects

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Insert the variable

#insert the variable
name city = “Cape Town”
lat _location = -33.9221
long location = 18.4231
year = 2025

month = 5

day = 26

tz = 2

Determine the sun declination

kuala lumpur = earth + wgs84.latlon(lat location,

long location, elevation m=0)

astro = kuala lumpur.at (ts.utc(year, month, day)).
observe (sun)

app = astro.apparent ()
app = astro.apparent ()
ra dec,dec_app,d app =
print (dec_app)

+21deg 04’ 00.3"

app.radec ()

Declination of the sun at Cape Town South Africa, on 26 May 2025 is +21°
04’ 00.3”.


http://www.skyfield.api
http://www.skyfield.api
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CALCULATION OF RASHDUL KIBLAT

The calculation of Rashdul Kiblat involve calculating the Equation of Time
and Sun Declination and the formula from 9 to 13. Using the previous exam-
ple, on 26 May 2025, at Cape Town, where the Equation of Time is 0° 3’ 7" and
the sun declination is +21° 04’ 00.3”, we can determine the time when the sun
shadow facing the Qibla direction.
First, determine the Qibla direction from the previous chapter coding.
Qibla Direction Coding

# Qibla Direction Calculation

¢ _Location = -33.9221

A_Location = 18.4231

¢_Kaabah = 21.4225

A _Kaabah = 39.8262

Difference Longitude = abs (A Location-A_ Kaabah )

#Calculation of Qibla Direction

import math

A = math.sin(math.radians (abs (Difference Longitude)))

B = math.cos(math.radians (¢ Location))*math.tan(math.r
adians (¢_Kaabah))

C = math.sin(math.radians (¢_Location)) * math.cos(m
ath.radians (Difference Longitude))

D = A/ (B-C)

0 = math.degrees (math.atan (D))

#Determine the Azimuth of the Qibla
if Difference Longitude > 180:

delta A = 360 - Difference_ Longitude
else:

delta A = Difference Longitude

if 6 > 0:
if A Location > A Kaabah:
quadrant = “UB” # Utara Barat
elif A Location <= A _Kaabah:
quadrant = “UT” # Utara Timur
elif A Location < 0:
if ¢ >= 180:
quadrant = “UB”
else:
quadrant = “UT”


http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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elif 6 < 0:
if A _Location > A Kaabah:
quadrant = “SB” # Selatan Barat
elif A Location <= A Kaabah:
quadrant = “ST” # Selatan Timur

elif A Location < 0:
if ¢ >= 180:
quadrant = “SB”
else:
quadrant = “ST”

if quadrant == “UB”:
azimuth kiblat = 360 - 6

elif quadrant == “SB”:
azimuth kiblat = 180 - 6

elif quadrant == “UT”:
azimuth kiblat = 6

elif quadrant == “ST”:
azimuth kiblat = 180 + 6

print (azimuth kiblat)
23.354225930229862

The Qibla azimuth in Cape Town is 23.354225930229862.
To calculate Rashdul Qibla, from formula 9, determining U using Python
code is written as

U = math.degrees (math.atan(l / (math.tan (math.

radians (-azimuth kiblat)) * math.sin(math.
radians (¢_Location)))))
print (U)

76.45187800936165

Sun declination, from previous coding is extracted from the variable dec_app.
This is in degree format and cannot be included in computation. To express the
sun declination in decimal format and make it computable, the code is

dec_app.degrees

Next, the value of T_U can be calculated using Equation 6.2 from sun declina-
tion and U variable. In Python this is written as,

T U = math.degrees (math.acos (math.tan(math.radians (
dec_app.degrees)) * math.cos(math.radians(U)) / math.t
an (math.radians (lat location))))

print (T_U)

97.71100015734693


http://www.math.atan
http://www.math.tan
http://www.math.sin
http://www.math.degrees
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After the T_U value is obtained, calculate the sun’s hour angle (7, ) using
Equation 6.3 using Python;

if U > 0:

t_HMS = (-abs(T_U) + U) / 15
else:

t_HMS = (abs(T_U) + U) / 15
print (t_HMS)
-1.4172748098656853

The Rashdul Qibla time, R in solar time, is obtained using Equation 6.4, and
is expressed in Python as

R = 12 + t_HMS
print (R)
10.582725190134315

The value of R is in solar time. To change the direction of Qibla in solar time
to local time, use Equation 6.5. Equation 6.5 requires data from time zone, I,
and Equation of Time, EoT. In Python this is written as,

if tz > 0:
Rashdul Kiblat = R - EoT + (tz * 15 - long
location) / 15
else:
Rashdul Kiblat = R - EoT + (abs(tz * 15) -
abs (long location)) / 15
print (Rashdul Kiblat)
11.302569623658991

The answer is in decimal. To convert to hour minute format,
# To Convert in Degree Form

degrees = int (Rashdul Kiblat)
decimal part = Rashdul Kiblat - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to
seconds

seconds round ( (minutes total - minutes) * 60)

print (£” {degrees}® {minutes}’ {seconds}"”)
11° 18" 9"

Rashdul Kiblat will occur, or The shadow of the sun, will point toward Qibla
direction at 11:18 AM on 25 May 2025. At Cape Town South Africa.
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Exercise 3

Determine the time of Rashdul Kiblat of Oslo in Norway, which has geograph-
ical latitude of 59.913333 North and 10.738889 East on July 30, 2025, that has
Time zone UTC+1. The Qaabah geographical latitude is 21.4225 Noth, longi-
tude is 39.8262 East.

Determine the Qibla direction

# Qibla Direction Calculation

¢ _Location = 59.913333

A _Location = 10.738889

¢ Kaabah = 21.4225

A_Kaabah = 39.8262

Difference Longitude = abs (A Location-A_Kaabah )

#Calculation of Qibla Direction
import math

A = math.sin(math.radians (abs (Difference Longitude)))
B = math.cos(math.radians (¢ Location))*math.tan(math.r
adians (¢_Kaabah))

C = math.sin(math.radians (¢_Location)) * math.cos(m
ath.radians (Difference Longitude))

D = A/ (B-Q)

0 = math.degrees (math.atan (D))

#Determine the Azimuth of the Qibla
if Difference Longitude > 180:

delta A = 360 - Difference Longitude
else:

delta A = Difference Longitude

if 6 > 0:
if A Location > A Kaabah:
quadrant = “UB” # Utara Barat
elif A Location <= A Kaabah:
quadrant = “UT” # Utara Timur
elif A Location < 0:
if ¢ >= 180:
quadrant
else:
quadrant
elif 6 < 0:
if A Location > A Kaabah:
quadrant = “SB” # Selatan Barat

“UB”

wyuT”


http://www.math.sin
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elif A Location <= )A_Kaabah:
quadrant = “ST” # Selatan Timur
elif A Location < 0:
if ¢ >= 180:

quadrant = “SB”
else:
quadrant = “ST”
if quadrant == “UB”:
azimuth kiblat = 360 - 0
elif quadrant == “SB”:
azimuth kiblat = 180 - 0
elif quadrant == “UT”:
azimuth kiblat = 0
elif quadrant == “ST”:

azimuth kiblat = 180 + 0
print (azimuth kiblat)
139.01065227776655

The qgibla direction is 139.01. Then, determine the Equation of Time. Install
pvlib first.

pip install pvlib
Then run the code,

import pvlib
from datetime import datetime
import math

Year = 2025
Month = 7
Day = 30

# define the date
date = datetime(Year, Month, Day)

# calculate the day of the year

day of year = date.timetuple().tm yday

EoT = pvlib.solarposition.equation of time pvcdrom(
day of year) / 60

print (f”Equation of Time on date {date} is {EoT}”)
Equation of Time on date 2025-07-30 00:00:00 is
-0.10191142861300423


http://www.pvlib.solarposition.equation_of_time_pvcdrom
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The Equation of Tme is —0.1019, then determine the solar declination. Install
skyfield first.

pip install skyfield

then run the code to calculate Sun Declination

#Determine the Sun Declination

#Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
#Load Ephemeris Data and Planet Objects

ts = load.timescale ()

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

earth = planets[‘earth’]

sun = planets[‘sun’]

#insert the variable

name city = “Oslo ™

lat location = 59.913333

long location = 10.738889

year = 2025

month = 7

day = 30

tz =1

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

astro = location.at(ts.utc(year, month, day)).
observe (sun)

app = astro.apparent ()
app = astro.apparent ()
ra dec,dec_app,d app =
print (dec_app)

+18deg 34’ 49.6"

app.radec ()

Determine the time of Rashdul Kiblat

# Rashdul Qiblat Computation
U = math.degrees (math.atan(l / (math.tan(math.
radians (-azimuth kiblat)) * math.sin(math.
radians (¢_Location)))))
T U = math.degrees (math.acos (math.tan(math.radians (
dec_app.degrees)) * math.cos(math.radians(U)) /
math.tan(math.radians (lat location))))


http://www.skyfield.api
http://www.skyfield.api
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if U > 0:
t_HMS = (-abs(T_U) + U) / 15
else:
t_HMS = (abs(T_U) + U) / 15
R=12+t HMS
if tz > 0:
Rashdul Kiblat = R - EoT + (tz * 15 - long
location) / 15
else:
Rashdul Kiblat = R - EoT + (abs(tz * 15) -
abs (long location)) / 15
# To Convert in Degree Form
degrees = int (Rashdul Kiblat)
decimal part = Rashdul Kiblat - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

# Step 3: Convert the decimal part of minutes to
seconds

seconds = round((minutes total - minutes) * 60)
print (£” {degrees}® {minutes}’ {seconds}"”)

10° 22" 17"

Rashdul Qiblat occurs at 10:22:17 in Osla on July 30, 2025.

Exercise 4

Use the Python program you’ve made to calculate the Rashdul Qibla for the city
of Washington, DC, in the USA that has geographical latitude of 38.904722
North and geographical longitude of 77.016389 West on March 25, 2025, that
has Time zone UTC-5.

Exercise 5

Use the Python program you’ve made to calculate the Rashdul Qibla for the city
of Johannesburg in South Africa that has geographical latitude of 26.204444
South and geographical longitude of 28.045556 East on November 3, 2025,
that has Time zone UTC+2.



Prayer Times
Calculation

Prayer time calculation is based on the position of the sun. Each country has
different methods of prayer time calculation. In Malaysia, the prayer time is
calculated based on tabular extrapolation on the position of the solar, its hour
angle, and Equation of Time.

The tabular extrapolation means that the calculation requires manual com-
putation and cannot be automated for yearly determinations. Therefore, the
calculation of prayer times in this does not use tabular extrapolation; instead,
it is extracted directly from the sun’s position, using the Skyfield library.

ZUHUR

The earliest time for Zuhr begins after solar noon, when the sun passes the
local meridian and reaches its highest point in the sky. It is based on Prophet
saying:

The time for Zuhr is when the sun has passed its zenith
until a person’s shadow is equal in length to his height.
Sahih Muslim (612)

The earliest time for Zuhr (Dhuhr) prayer begins just after the sun passes its
zenith, known as the solar transit. To ensure the sun has fully crossed the
meridian and begun its descent, an offset equal to half of the sun’s appar-
ent diameter is applied. This corresponds to approximately 1 minute and 4
seconds.

Using the Skyfield library in Python, the solar daily transit time can be
accurately calculated based on the actual position of the sun. This method does
not require the Equation of Time, as Skyfield already accounts for the sun’s
apparent motion and Earth’s orbital variations. To calculate the Zuhr prayer

48 DOI: 10.1201/9781003649120-7
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time. First, we need the corresponding location and date. For this case, we
use London coordinates, which are 51.5072 North, 0.1276° West, time zone of
GMT+I, during the date of 28 May 2025. Then, we need to import function
that are needed for the calculation.

from skyfield.api import load
from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

The import almanac is added since the function to find solar transit is located
under the function almanac.
Put input into the variable

latitude = 51.5072
longitude = -0.1276
timezone = 1

day = 28

month = 5

year = 2025

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

Skyfield require range of calculate date. If we want to locate the time of the
transit between 29 May 2025 to 30 May 2025, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, to find the time of solar transit

t = almanac.find transits(location, sun, tO, tl)
print (t)
<Time tt=[2460823.99928731]>


http://www.skyfield.api
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The result is in Julian Day Number. The extract hour, minute and seconds of
solar transit from

hour solar transit = t.utc.hour
minutes solar transit = t.utc.minute
second_solar transit = t.utc.second

print (hour solar transit)
print (minutes solar transit )
print (second solar transit)
[11.1]

[57.1

[49.23954726]

This means that solar transit will occur at 11:57:49. However, this is not time-
zone corrected. In addition, the Zuhur will occur at 1 minute 4 seconds after
solar transit, which is 0.017778 in hour. Therefore, to make the correction
based on actual Zuhur time.

zuhur time = hour solar transit + (minutes solar
transit / 60) + (second solar transit / 3600 ) +
timezone + 0.017778

print (zuhur time)

[12.98145565]

This means that after timezone and 1 minute 4 seconds correction, the Zuhr
time is [12.98145565]. This is not in time format; to convert into time format:

# To Convert in Degree Form

degrees = int (zuhur time )

decimal part = float (zuhur time) - degrees
minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
sun_astro = location.at(ts.utc(year, month, day,

hour solar transit, minutes solar transit, second
solar transit)) .observe (sun)
sun _alt, , = sun astro.apparent().altaz()

# Check if the sun is above the horizon at Zuhr time
if sun alt.degrees <= 0:

zuhur = “Zuhur Does Not Occur”
else:
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zuhur = f£”Zuhur Occurs at {degrees}° {minutes}’
{seconds}"”

print (zuhur)
Zuhur Occurs at 12° 58’ 53"

This means that the zuhur prayer time at 51.5072 North, 0.1276° West, time
zone of GMT+1, during the date of 28 May 2025 occurs at 12:58:53. The above
code include counter measure should the Zuhur be calculated at a location near
the North or South pole.

Exercise 1

Determine the Zuhr prayer time for Abuja, Nigeria, which is located at coor-
dinates 9.0563° North, 7.4985° East, with a time zone of GMT+1, on the date
of 1 January 2014.

Install skyfield

pip install skyfield
Import Necessary Function

from skyfield.api import load
from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

Load Ephemeris Data and Planet Objects

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Input the Variable

lat_location = 9.0563
long location = 7.4985
timezone = 1

day =1

month = 1

year = 2014
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Input info to location variable

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

Determine the Range of Data

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Find the time of Transit

t = almanac.find transits(location, sun, tO, tl)

Extract Hour, Minutes, Seconds

hour solar transit = t.utc.hour
minutes solar transit = t.utc.minute
second_solar transit = t.utc.second

print (hour solar transit)
print (minutes solar transit )
print (second solar transit)

Zuhur Time in decimal

zuhur time = hour solar transit + (minutes solar
transit / 60) + (second solar transit / 3600 ) +
timezone + 0.017778

print (zuhur time)

Zuhur in Time Format

degrees = int (zuhur time )

decimal part = zuhur time - degrees
minutes total = decimal part * 60
minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

sun_astro = location.at(ts.utc(year, month, day,

hour solar transit, minutes solar transit, second
solar transit)) .observe (sun)

sun _alt, , = sun astro.apparent().altaz()

# Check if the sun is above the horizon at zuhur time
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if sun_alt.degrees <= 0:
zuhur = “Zuhur Does Not Occur”

else:
zuhur = f”Zuhur Occurs at {degrees}° {minutes}’
{seconds}"”

print (zuhur)
Zuhur occurs at 12° 34’ 37"

This means that Zuhur prayer time at Abuja, Kenya coordinate, which are
9.0563 North, 7.4985 East, time zone of GMT+1, during the date of 1 January
2014 will occur at 13:05:08.

Exercise 2

Determine the Zuhr prayer time for Buenos Aires, Argentina, which is located
at coordinates 34.6037° South, 58.3816° West, with a time zone of GMT-3, on
the date of 5 November 2023.

Exercise 3

Determine the Zuhr prayer time for Vancouver, Canada, which is located at

coordinates 49.2827° North, 123.1207° West, with a time zone of GMT-8, on
the date of 10 September 2020.

ASAR

The beginning of Asar prayer time is based on the length of the sun’s shadow.
This is based on the prophetic saying;

...Then he prayed Asr when everything was similar (to the length of) its
shadow...

...Then he prayed Asr when the shadow of everything was about twice as
long as it...

There are several interpretations for the actual length of shadow for the start
of the Asar prayer time. First, as adopted by the Asy-Syafie School of Islamic
Thought, the length of the sun shadow for Asar prayer times is
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Asar Shadow Syafie = 1x height of a stick Equation 7.1

Or written in Python as

sun_shadow_asar = 1

because we assume the height of the stick is 1, regardless of the unit. For
Hanafi School of Islamic Thought, the length of the sun shadow for Asar
prayer times is

Asar Shadow Hanafi = 2 x height of a stick Equation 7.2

Or written in Python as

sun_shadow_asar = 2

Other opinion, as adopted by Malaysia, the length of the sun shadow for Asar
prayer time is

Asar Shadow Others = Sun Shadow during solar transit + 1 height of a stick

Equation 7.3

Or written in Python as
sun_shadow_asar = 1 + sun_shadow_transit

To calculate the prayer time of Asar, we need to calculate the length of the
sun shadow in a time loop from solar transit until the stipulated length of the
sun shadow for Asar prayer time. For example, for the London coordinate,
which are 51.5072 North, 0.1276° West, time zone of GMT+1, during the date
of 28 May 2025, where the Asar sun shadow is Equation 7.3. First, we need to
import function that are needed for the calculation.

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = 51.5072
long location = -0.1276
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timezone = 1
day = 28
month = 5
year = 2025

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

Skyfield require range of calculate date. If we want to locate the time of the
transit between 29 May 2025 to 30 May 2025, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, to find the time of solar transit
t = almanac.find transits(location, sun, tO0, tl)

After finding the solar transit, determine the position of sun altitude at the time
of the solar transit

h, m, s = t.utc.hour, t.utc.minute, t.utc.second
sun_astro = location.at(ts.utc(year, month, day,
h, m)) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

In the above code, sun_astro is the astrometric position of the sun. The astro-
metric position needs to be converted to apparent position to determine the
altitude of the sun. Therefore, the code sun_app = sun_astro.apparent() makes
the conversion from astrometric to apparent position. Then, to determine the
altitude of the sun, sun_alt, sun_az, distance = sun_app.altaz(), where sun_alt
is the sun altitude, sun_az is the sun azimuth. distance is the apparent distance
between the sun and earth.
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print (sun_alt)
60deg 02’ 14.0”

From the above code, we know that the altitude of the sun is 60° 02’ 14.0”. Then,
determine the length of the sun shadow during transit, which is written as

sun_shadow_transit = 1/ (math.tan(math.radians(sun_alt
.degrees)))

print (sun_shadow transit)

0.576484553268423

The result is 0.5764, indicating that at the time of solar transit, the length of
the sun’s shadow is approximately 57.64% of the stick’s height, assuming the
stick height is 1. Then to determine the sun shadow has reach the length from
Equation 7.3.

sun_shadow asar = 1 + sun_shadow_ transit
print (sun_shadow_ asar)
1.5764845532684229

At the time of solar transit, the length of the sun’s shadow is approximately
0.5764, meaning it is only 57.64% of the stick’s height. However, for the Asar
prayer, the required shadow length is 1.5764, or 157.64% of the stick’s height.
This indicates that the sun must descend further in the sky before the Asar time
begins. To accurately determine the time for Asar prayer, a time-based loop
is implemented starting from the moment of solar transit. This loop checks
the length of the shadow at each point in time until it reaches the required
Asar length. To make the process more efficient, the loop is divided into three
stages: hour loop, minute loop, and second loop, allowing the program to
incrementally and precisely identify the exact time when the condition is met.
To develop with hour time loop, with the rule of the loop the sun shadow does
not pass the length of the Asar sun shadow,

# Start with hour
test = 1
while True:

# Calculate the shadow length

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)

sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

sun_shadow= 1 / math.tan(math.radians (sun_alt.
degrees))
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if sun_alt.degrees <= 0:
break
if test > 24:
break
if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length matches
or exceeds the desired length
h+=1
test +=1
print (£'Sun Altitude {sun alt.degrees}, Sun_Shadow
{sun shadow} at hour {h}’)

Sun Altitude [58.06080941], Sun Shadow
0.6233945983146184 at hour [12.]

Sun Altitude [60.03162483], Sun Shadow
0.5766145603035456 at hour [13.]

Sun Altitude [57.62354596], Sun Shadow
0.6340429848026038 at hour [14.]

Sun Altitude [51.70606881], Sun Shadow
0.7895804424162487 at hour [15.]

Sun Altitude [43.7299877], Sun_Shadow
1.0453443161558726 at hour [16.]

Sun Altitude [34.76344347], Sun Shadow
1.4407721100751296 at hour [17.]

From the printed output above, we can see that the Sun’s shadow exceeds the
required Asar shadow length at hour 17. Therefore, we step back one hour and
proceed with a minute-level time loop to more precisely determine the exact
minute when the required shadow length is first reached.

# Once the condition is met for hours, move to minutes
h asar = h - 1
test=1
while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m, s)).observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
sun_shadow = 1 / math.tan(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
break

if test > 1440:
break
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if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length matches
or exceeds the desired length
m += 1
test +=1
print (£'Sun Altitude {sun alt.degrees}, Sun_Shadow
{sun shadow} at minute {m}’)

# Increment time in minutes
m asar = m - 1

Sun Altitude [34.76344347], Sun Shadow
1.4407721100751296 at minute 2

Sun Altitude [34.60973771], Sun Shadow
1.449055572925344 at minute 3

Sun Altitude [34.45594556], Sun Shadow
1.4574083986033666 at minute 4

Sun Altitude [34.30206933], Sun Shadow
1.4658314538010262 at minute 5

Sun Altitude [34.14811128], Sun Shadow
1.4743256209720872 at minute 6

Sun Altitude [33.99407369], Sun Shadow
1.4828917986639925 at minute 7

Sun Altitude [33.8399588], Sun_Shadow
1.4915309018584026 at minute 8

Sun Altitude [33.68576885], Sun Shadow
1.50024386232121 at minute 9

Sun Altitude [33.53150605], Sun Shadow
1.5090316289614694 at minute 10

Sun Altitude [33.37717262], Sun Shadow
1.517895168199992 at minute 11

Sun Altitude [33.22277074], Sun Shadow
1.5268354643482442 at minute 12

Sun Altitude [33.06830259], Sun Shadow
1.5358535199970826 at minute 13

Sun Altitude [32.91377034], Sun Shadow
1.544950356416044 at minute 14

Sun Altitude [32.75917614], Sun Shadow
1.554127013963914 at minute 15

Sun Altitude [32.60452212], Sun Shadow
1.5633845525101653 at minute 16

Sun Altitude [32.44981041], Sun Shadow
1.5727240518677097 at minute 17

From the printed output above, we can see that the Sun’s shadow exceeds the
required Asar shadow length at minute 23. Therefore, we step back one minute
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and proceed with a second-level time loop to more precisely determine the

exact minute when the required shadow length is first reached.

# Once the condition is met for minutes, move to
seconds
test=1
while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m asar, s)).observe(sun)

sun_alt, _, = sun_astro.apparent () .altaz () # Get

the altitude of the sun
sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break
if test > 86400:
break
if sun shadow >= sun shadow asar:

break # Exit the loop if the shadow length matches

or exceeds the desired length
s += 1
test +=1

print (£'Sun Altitude {sun alt.degrees}, Sun_ Shadow

{sun_shadow} at second {s}’)
# Increment time in seconds
s_asar = s

Sun Altitude [32.44981041], Sun Shadow
1.5727240518677097 at second 2

Sun Altitude [32.44723141], Sun Shadow
1.5728804108174916 at second 3

Sun Altitude [32.44465239], Sun Shadow
1.573036792844485 at second 4

Sun Altitude [32.44207335], Sun Shadow
1.5731931979536897 at second 5

Sun Altitude [32.4394943], Sun_ Shadow
1.573349626150443 at second 6

Sun Altitude [32.43691523], Sun Shadow
1.5735060774396996 at second 7

Sun Altitude [32.43433615], Sun Shadow
1.573662551826798 at second 8
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Sun Altitude [32.43175705], Sun Shadow
1.5738190493167965 at second 9

Sun Altitude [32.42917794], Sun Shadow
1.573975569914748 at second 10

Sun Altitude [32.42659881], Sun Shadow
1.5741321136259998 at second 11

Sun Altitude [32.42401967], Sun Shadow
1.5742886804555098 at second 12

Sun Altitude [32.42144051], Sun Shadow
1.5744452704086311 at second 13

Sun Altitude [32.41886133], Sun Shadow
1.5746018834903772 at second 14

Sun Altitude [32.41628214], Sun Shadow
1.5747585197059564 at second 15

Sun Altitude [32.41370294], Sun Shadow
1.5749151790605282 at second 16

Sun Altitude [32.41112372], Sun Shadow
1.5750718615593058 at second 17

Sun Altitude [32.40854448], Sun Shadow
1.5752285672074033 at second 18

Sun Altitude [32.40596523], Sun Shadow
1.5753852960098962 at second 19

Sun Altitude [32.40338597], Sun Shadow
1.5755420479721345 at second 20

Sun Altitude [32.40080668], Sun Shadow
1.5756988230991047 at second 21

Sun Altitude [32.39822739], Sun Shadow
1.5758556213961656 at second 22

Sun Altitude [32.39564808], Sun Shadow
1.5760124428683018 at second 23

Sun Altitude [32.39306875], Sun Shadow
1.5761692875208748 at second 24

Sun Altitude [32.39048941], Sun Shadow
1.5763261553589674 at second 25

Sun Altitude [32.38791005], Sun Shadow
1.5764830463876598 at second 26

From the printed output above, we can see that the sun’s shadow exceeds the
required Asar shadow length at seconds 26. Therefore, we step back one sec-
ond. The Asar time, after the time loop, with timezone correction is

asar time = (h asar + (m_asar) / 60 + s_asar / 3600) +
timezone

print (asar_ time)

[17.27388889]
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This is observed in decimal. To convert to time format.

asar time = float (asar_ time)
degrees = int (asar time)

decimal part = asar time - degrees
minutes total = decimal part * 60
minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees <= 0 or test >86400:
asar = “Asar Does Not Occur”

else:
asar = f”Asar Occurs at {degrees}®° {minutes}’
{seconds}"”

print (asar)
Asar Occurs at 17° 16’ 26"

Therefore, asar prayer time at London, during 28 May 2025, based on Equation
7.3 occurs at 17:16:26. The second part is a counter measure should the cal-
culated position is near the North or South Pole. Now, use the same London
coordinate, which are 51.5072 North, 0.1276° West, time zone of GMT+1, dur-
ing the date of 28 May 2025. Determine the prayer time of asar, where the asar
sun shadow is Equation 7.1. First, we need to import function that are needed
for the calculation.

from skyfield.api import load
from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = 51.5072

long location = -0.1276
timezone = 1

day = 28

month = 5

year = 2025
Load ephemeris.

ts = load.timescale()
eph = load(‘'de440s.bsp’)
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planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, to find the time of solar transit
t = almanac.find transits(location, sun, tO, tl)

After finding the solar transit, determine the position of sun altitude at the time
of the solar transit

h, m, s = t.utc.hour, t.utc.minute, t.utc.second
sun_astro = observer.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

print (sun_alt)

60deg 02’ 14.0"

Then, determine the length of the sun shadow during transit, which is written as

sun_shadow_transit = 1/ (math.tan(math.radians(sun_alt
.degrees)))

print (sun_shadow transit)

0.576484553268423

Then to determine the sun shadow has reach the length from Equation 7.1.
sun_shadow_asar = 1

At the time of solar transit, the length of the sun’s shadow is approximately
0.57, meaning it is only 57% of the stick’s height. However, for the Asar prayer,
the required shadow length is 1 or 100% of the stick’s height. This indicates
that the sun must descend further in the sky before the Asar time begins. Write
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the hour time loop, with the rule of the loop the sun shadow does not pass the
length of the afar sun shadow

# Start with hour

test=1
while True:

# Calculate the shadow length

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe(sun)
sun_alt, , _ = sun _astro.apparent().altaz() # Get

the altitude of the sun
sun_shadow= 1 / math.tan(math.radians (sun_alt.
degrees) )

if sun alt.degrees <= 0:
break

if test > 24:
break

if sun shadow >= sun shadow asar:
break # Exit the loop if the shadow length matches
or exceeds the desired length
h+=1
print (£’Sun Altitude {sun alt.degrees}, Sun_Shadow
{sun_shadow} at hour {h}’)

Proceed with a minute-level time loop to more precisely determine the exact
minute when the required shadow length is first reached.

# Once the condition is met for hours, move to minutes
h asar = h - 1
test=1

while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m, s)) .observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees) )
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if sun_alt.degrees <= 0:
break

if test > 1440:
break

if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length matches
or exceeds the desired length

m += 1

print (£'Sun Altitude {sun alt.degrees}, Sun_Shadow

{sun shadow} at minute {m}’)

# Increment time in minutes

m asar = m - 1

Proceed with a second-level time loop to more precisely determine the exact
minute when the required shadow length is first reached.

# Once the condition is met for minutes, move to
seconds
test = 1
while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m_asar, s)) .observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
sun_shadow = 1 / math.tan(math.radians(sun_alt.

degrees))

if sun_alt.degrees <= 0:
break

if test > 86400:
break

if sun_shadow >= sun_shadow_asar:

break # Exit the loop if the shadow length matches
or exceeds the desired length

s += 1

print (£'Sun Altitude {sun alt.degrees}, Sun_Shadow
{sun shadow} at second {s}’)

# Increment time in seconds

s_asar = s
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The asar time, after the time loop, with timezone correction is

asar_time = (h_asar + (m_asar) / 60 + s_asar / 3600)

timezone
print (asar_ time)

This is observed in decimal. To convert to time format.

asar time = float (asar_ time)
degrees = int (asar time)

decimal part = asar time - degrees
minutes total = decimal part * 60
minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
if sun alt.degrees <= 0 or test >86400:
asar = “Asar Does Not Occur”
else:
asar = f”Asar Occurs at {degrees}° {minutes}’
{seconds}"”

print (asar)
Asar Occurs at 15° 52’ 6"

+

Therefore, asar prayer time at London, during 28 May 2025, based on Equation
7.1 occurs at 15:52:06. Finally, use the same London coordinate, which are
51.5072 North, 0.1276° West, time zone of GMT+1, during the date of 28 May
2025. Determine the prayer time of asar, where the asar sun shadow is Equation

7.2. Following from the above code, the change is Equation 7.2. Where,

sun_shadow_asar = 2

The hour time loop, with the rule of the loop the sun shadow does not pass the

length of the afar sun shadow
# Start with hour

test =1
while True:

# Calculate the shadow length

sun_astro = location.at(ts.utc(year, month, day,

m, s)).observe (sun)

sun_alt, _, _ = sun_astro.apparent().altaz() # Get

the altitude of the sun
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sun_shadow= 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break

if test > 24:
break

if sun shadow >= sun_ shadow asar:

break # Exit the loop if the shadow length matches

or exceeds the desired length
h +=1

# Once the condition is met for hours, move to minutes

h asar = h -1

test=1

while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m, s)) .observe (sun)

sun_alt, _, _ = sun_astro.apparent().altaz() # Get

the altitude of the sun
sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees) )

if sun alt.degrees <= 0:
break

if test > 1440:
break

if sun shadow >= sun shadow asar:

break # Exit the loop if the shadow length matches

or exceeds the desired length
m +=

# Increment time in minutes
m asar = m - 1
test = 1

# Once the condition is met for minutes, move to
seconds
while True:
# Calculate the shadow length
sun_astro = location.at(ts.utc(year, month, day,
h asar, m asar, s)).observe(sun)
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sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break

if test > 86400:
break

if sun shadow >= sun shadow asar:
break # Exit the loop if the shadow length matches
or exceeds the desired length
s += 1
# Increment time in seconds
s_asar = s
The asar time, after the time loop, with timezone correction is
asar time = (h asar + (m_asar) / 60 + s_asar / 3600) +
timezone

print (asar_ time)

This is observed in decimal. To convert to time format.

asar time = float (asar_ time)

degrees = int (asar time)

decimal part = asar time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
print (£” {degrees}® {minutes}’ {seconds}"”)

17° 53’ 55"

Therefore, asar prayer time at London, during 28 May 2025, based on Equation
7.2 occurs at 17:53:55.

Exercise 1

Using the coordinates of Cairo, which are 30.0444° North, 31.2357° East, and
a time zone of GMT+2, determine the Asar prayer time for the date 10 March
2025.


http://www.math.tan

68 Python for Islamic Astronomy

Use Equation 14 to compute the shadow length required at Asar.

Exercise 2

Using the coordinates of Kuala Lumpur, which are 3.1390° North, 101.6869°
East, and a time zone of GMT+8, determine the Asar prayer time for the date
21 September 2025.

Apply Equation 15 to evaluate the required shadow length for Asar.

Exercise 3

Using the coordinates of New York City, which are 40.7128° North, 74.0060°
West, and a time zone of GMT-4, determine the Asar prayer time for the date
August 5, 2025.

Use Equation 16 to find when the shadow length meets the Asar
requirement.

MAGHRIB

The beginning of Maghrib prayer time is based on the position of the sunset.
This is based on the prophetic saying;

...Then he prayed Maghrib when the sun had set and the fasting person
breaks fast....

The position of the sun must be completely below the horizon to mark the
beginning of Maghrib prayer. This means that the upper limb of the sun must
have fully disappeared. However, factors such as atmospheric refraction and
the observer’s elevation above sea level can affect the apparent position of the
sun at sunset. These variables must be carefully considered when calculating
the precise time for Maghrib prayer. The determination of Maghrib prayer
time is based on the find_settings function. Skyfield uses the official definition
of sunrise and sunset from the United States Naval Observatory, which defines
them as the moment when the center of the sun is 50 arcminutes below the
horizon, to account for both the average solar radius of 16 arcminutes and for
roughly 34 arcminutes of atmospheric refraction at the horizon. To determine
the time of the maghrib prayer time, assuming the user is located at Sydney
Tower Eye, with Latitude 33.8688° South, Longitude 151.2093° East, on 23
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March 2025, where the timezone in effect is GMT + 11, with elevation of 350
meter. First, we need to import function that are needed for the calculation.

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = -33.8688
long location = 151.2093
timezone = 11

day = 23

month = 3

year = 2025

ele = 350

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele
earth radius m = 6378136.6


http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
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side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure_mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
print (h,m, s)

[8.] [5.]1 [28.44139129]

The time of the sunset is 8:05:28.44, at UTC time. To convert into local time
with GMT + 11.

maghrib time = float(h + m / 60 + s / 3600 + timezone)
print (maghrib time)
19.09123372

When calculating prayer times near sunset, there may be instances where the
computed time exceeds 24 hours. This typically occurs due to the addition of
the local time zone offset to the base time (often in UTC). To correct this and
ensure the resulting prayer time remains within a 24-hour format, the follow-
ing code is used to normalize the time

maghrib_time %= 24 # Ensure 24-hour clock format
print (maghrib time)

From this moment, we can convert into time format,

maghrib time = float (maghrib time)

degrees = int (maghrib time)

decimal part = maghrib time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

sun_astro = location.at (ts.utc(year, month, day, h, m,
s) ) .observe (sun)
sun_alt, , = sun astro.apparent().altaz()
if sun alt.degrees >= 0:
maghrib = “Maghrib Does Not Occur”


http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
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else:
maghrib = f”Maghrib Occurs at {degrees}° {minutes}’
{seconds}"”

print (maghrib)

Maghrib Occurs at 19° 5’ 28"

This means that Maghrib at Sydney Tower Eye, with Latitude 33.8688° South,
Longitude 151.2093° East, on 23 March 2025, where the timezone in effect is
GMT + 11, with elevation of 350 meter occur at 19:5:28.

Exercise 1

Determine the Maghrib prayer time on 15 July 2025 for a user located at the
KL Tower, Malaysia, with the following details:

e Latitude: 3.1579° North

* Longitude: 101.7123° East
¢ Elevation: 300 meters

¢ Time Zone: GMT +8

Exercise 2

Calculate the Maghrib prayer time for Cairo, Egypt on 10 October 2025, with
the following coordinates:

e Latitude: 30.0444° North
» Longitude: 31.2357° East
¢ FElevation: 75 meters
¢ Time Zone: GMT +2

Exercise 3

On 1 January 2025, determine the time of Maghrib prayer for a user located at
the Empire State Building, New York, USA:

* Latitude: 40.7484° North

* Longitude: 73.9857° West

* Elevation: 381 meters

¢ Time Zone: GMT -5 (Standard Time, no DST)
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Exercise 4

Compute the Maghrib prayer time for a location in Makkah, Saudi Arabia, on
28 May 2025:

e Latitude: 21.4225° North
* Longitude: 39.8262° East
¢ Elevation: 277 meters
e Time Zone: GMT +3

ISYA’

The beginning of Isya’ prayer time is based on the position of the sky condition
after sunset. This is based on the prophetic saying;

...Then he prayed Isha when the twilight had vanished....

The disappearance of twilight from the sky is caused by the sun’s continued
descent below the horizon after sunset. At a certain angle, known as the solar
depression angle, the sun’s rays are no longer refracted by the atmosphere in a
way that illuminates the night sky. When this critical angle is reached, the sky
becomes completely dark, marking the beginning of the ‘Isha (Isya’) prayer time.
However, Islamic scholars differ in their opinions regarding the exact degree
of solar depression that signifies the start of ‘Isha. While many adopt angles
between 15° and 18° below the horizon, there is no unanimous agreement, and
various regions apply different standards based on jurisprudential reasoning and
observational studies. To determine the Isya’ prayer time, at Bangkok where
Latitude 13.7563° North, Longitude 100.5018° East and Time Zone GMT+7,
with elevation of 150 meter on 16 June 2025 for 18 degrees of solar depression
during Isya’. First, we need to import function that are needed for the calculation.

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = 13.7563
long location = 100.5018


http://www.skyfield.api
http://www.skyfield.api

7 e Prayer Times Calculation 73

timezone = 7
day = 16
month = 6
year = 2025
ele = 150

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure _mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
print (h,m, s)

[11.] [48.] [36.56323494]


http://www.de440s.bsp
http://www.de440s.bsp
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Since the ‘Isha (Isya’) prayer occurs after sunset, it is necessary to perform a
time-based loop starting from the moment of sunset and continuing until the
solar altitude reaches 18 degrees of solar depression. The time loop operation
is similar with the previous asar prayer time loop operation. First determine
the solar altitude,

sun_astro = location.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

print (sun_alt)

-0ldeg 06’ 01.2”"

To develop with hour time loop, with the rule of the loop the solar degree does
not pass the altitude of — 18.

# Start with hour
test=1
while True:

# Calculate the Solar Altitude

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)

sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

isha angle = 18

elevation correction = 0.0293 * math.sqgrt (ele)

isha angle actual = -isha angle - elevation correction

if sun alt.degrees >= 0:
break

if test > 24:
break

if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

print (£'Sun Altitude {sun_alt.degrees}, at hour

{h}")
h += 1
test += 1

Sun Altitude [-1.23504713], at hour [11.]
Sun Altitude [-14.26400679], at hour [12.]

In the above code, if sun_alt.degrees <= isha_angle_actual: is used to deter-
mine whether the solar altitude has reach below 18 degree of depression. In
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this example, the elevation factor is considered for high-altitude locations.
When calculating prayer times, particularly for Isha and Fajr, the position of
the sun below the horizon is critical. Typically, the angle used for Isha is when
the sun is 18 degrees below the horizon. However, this standard angle is based
on observations made at sea level.

At higher elevations, the situation changes due to the geometry of the
Earth and the observer’s horizon. When a person is located on a mountain
or at a high-altitude location, their view of the sky is broader, and they are
physically above a portion of the atmosphere. As a result, the sun appears to
set faster, and darkness arrives sooner compared to someone at sea level. To
accurately reflect this earlier onset of night, the Isha angle must be adjusted
slightly downward, meaning a larger depression angle. This is why we include
an elevation correction factor in the calculation. The correction is often cal-
culated using the formula:

elevation correction = 0.0293 x /(elevation in meters) Equation 7.4

This value is subtracted from the standard Isha angle (e.g., —18°), giving a
slightly steeper actual angle for high-altitude locations. For instance, at 4000
meters elevation, the correction might be around 1.85 degrees, so the adjusted
angle becomes approximately —19.85 degrees. This adjustment ensures that
the calculated Isha time matches the true observable darkness experienced by
someone at that elevation. Without applying this correction, the prayer time
would be inaccurately delayed, especially in mountainous regions. From the
output, the sun altitude reach angle below —18 degrees at hour 12. Then pro-
ceed with a minute-level time loop to more precisely determine the exact min-
ute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h isya =h - 1
test=1

while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h isya, m, s)).observe (sun)
sun_alt, , = sun astro.apparent().altaz() # Get
the altitude of the sun

if sun alt.degrees >= 0:
break

if test > 1440:
break


http://www.location.at
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if sun_alt.degrees <= isha angle_actual:
break # Exit the loop if the solar altitude
located below -18 degree

m += 1

print (£'Sun Altitude {sun alt.degrees}, at minute

{m} ")

# Increment time in minutes

m isya =m - 1

Sun Altitude [-14.26400679], at minute [409.
Sun Altitude [-14.47642833], at minute [50.
Sun Altitude [-14.68866518], at minute [51.
Sun Altitude [-14.90071568], at minute [52.
Sun Altitude [-15.11257813], at minute [53.
Sun Altitude [-15.32425085], at minute [54.
Sun Altitude [-15.53573212], at minute [55.
Sun Altitude [-15.74702021], at minute [56.
Sun Altitude [-15.95811338], at minute [57.
Sun Altitude [-16.16900984], at minute [58.
Sun Altitude [-16.37970783], at minute [59.
Sun Altitude [-16.59020554], at minute [60.
Sun Altitude [-16.80050114], at minute [61.
Sun Altitude [-17.0105928], at minute [62.]
Sun Altitude [-17.22047865], at minute [63.
Sun Altitude [-17.43015683], at minute [64.
Sun Altitude [-17.63962543], at minute [65.
Sun Altitude [-17.84888254], at minute [66.
Sun Altitude [-18.05792617], at minute [67.
Sun Altitude [-18.26675447], at minute [68.

e e e e e e e e e e e

— e e e e e

From the printed output above, we can see that the sun altitude reaches below
the required Isya’ depression degree at minute 68. Therefore, we step back one
minute and proceed with a second-level time loop to more precisely determine
the exact minute when the required Isya’ depression degree is first reached.

# Once the condition is met for minutes, move to
seconds
test = 1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h isya, m _isya, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
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if sun_alt.degrees >= 0:
break

if test > 86400:
break

if sun_alt.degrees <= isha angle_actual:
break # Exit the loop if the solar altitude
located below -18 degree

s += 1

print (f'Sun Altitude {sun alt.degrees}, at second

{s}"
# Increment time in seconds
s_isya = s

Sun Altitude [-18.26675447], at second [37.56323494]
Sun Altitude [-18.2702331], at second [38.56323494]

Sun Altitude [-18.27371168], at second [39.56323494]
Sun Altitude [-18.27719019], at second [40.56323494]
Sun Altitude [-18.28066865], at second [41.56323494]
Sun Altitude [-18.28414704], at second [42.56323494]
Sun Altitude [-18.28762538], at second [43.56323494]
Sun Altitude [-18.29110365], at second [44.56323494]
Sun Altitude [-18.29458186], at second [45.56323494]
Sun Altitude [-18.29806001], at second [46.56323494]
Sun Altitude [-18.30153811], at second [47.56323494]
Sun Altitude [-18.30501614], at second [48.56323494]
Sun Altitude [-18.30849411], at second [49.56323494]
Sun Altitude [-18.31197202], at second [50.56323494]
Sun Altitude [-18.31544987], at second [51.56323494]
Sun Altitude [-18.31892766], at second [52.56323494]
Sun Altitude [-18.32240539], at second [53.56323494]
Sun Altitude [-18.32588306], at second [54.56323494]
Sun Altitude [-18.32936066], at second [55.56323494]
Sun Altitude [-18.33283821], at second [56.56323494]
Sun Altitude [-18.3363157], at second [57.56323494]

Sun Altitude [-18.33979312], at second [58.56323494]
Sun Altitude [-18.34327049], at second [59.56323494]
Sun Altitude [-18.34674779], at second [60.56323494]
Sun Altitude [-18.35022504], at second [61.56323494]
Sun Altitude [-18.35370222], at second [62.56323494]
Sun Altitude [-18.35717935], at second [63.56323494]
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From the printed output above, we can see that the solar altitude exceeds the
required Isya’ Solar Depression at second 63. Therefore, we step back one sec-
ond. The Isya’ time, after the time loop, with timezone correction is

isya time = (h_isya + (m_isya) / 60 + s_isya /
3600) +timezone

print (isya time)

[20.13444444]

To correct this and ensure the resulting prayer time remains within a 24-hour
format,

isya_time %= 24 # Ensure 24-hour clock format
print (isya time)

To convert into time format,

isya time = float (isya time)

degrees = int (isya time)

decimal part = isya time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees >= 0 or test >86400:
isya = “Isya’ Does Not Occur”

else:
isya = f”Isya’ Occurs at {degrees}° {minutes}’
{seconds}"”

print (isya)
Isya’ Occurs at 20° 8' 4"

Isya prayer time at Bangkok where Latitude 13.7563° North, Longitude
100.5018° East and Time Zone GMT+7, with elevation of 150 meter on 16 June
2025 for 18 degree of solar depression is Isya’ is at 20:08:04.

Exercise 1

Determine the ‘Isya prayer time at Jakarta, Indonesia, where Latitude: 6.2088°
South, Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters,
Date: 21 July 2025, Assume ‘Isya begins at a solar depression of —17°.

First, we need to import function that are needed for the calculation.
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from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = -6.2088
long location = 106.8456
timezone = 7

day = 21

month = 7

year = 2025

ele = 50

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60
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r = refraction(0.0, temperature C=15.0,
pressure _mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
print (h,m, s)

[10.] [54.] [23.66874027]

Since the ‘Isha (Isya’) prayer occurs after sunset, it is necessary to perform a
time-based loop starting from the moment of sunset and continuing until the
solar altitude reaches 18 degrees of solar depression. The time loop operation
is similar with the previous asar prayer time loop operation. First determine
the solar altitude,

sun_astro = location.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

print (sun_alt)

-00deg 58’ 37.5"

To develop with hour time loop, with the rule of the loop the solar degree does
not pass the altitude of — 17.

# Start with hour

test =1
while True:

# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,

h+1, m, s)) .observe (sun)

sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

isha angle = 17

elevation correction = 0.0293 * math.sqgrt (ele)

isha angle actual = -isha angle - elevation correction

if sun alt.degrees >= 0:
break

if test > 24:
break
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if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

h=h+1

Then proceed with a minute-level time loop to more precisely determine the
exact minute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h isya =h - 1
test = 1
while True:
# Calculate the Solar Altitude

sun_astro = location.at (ts.utc(year, month, day,
h isya, m, s)).observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get

the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 1440:
break

if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

m += 1

# Increment time in minutes
m isya =m - 1

Proceed with a second-level time loop to more precisely determine the exact
minute when the required Isya’ depression degree is first reached.

# Once the condition is met for minutes, move to
seconds
test = 1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h isya, m isya, s)).observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
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if sun_alt.degrees >= 0:
break

if test > 86400:
break

if sun_alt.degrees <= isha angle_actual:
break # Exit the loop if the solar altitude
located below -18 degree
s += 1
print (£'Sun Altitude {sun alt.degrees}, {isha angle
actual} at second {s}')

# Increment time in seconds
s _isya = s

Then, we step back one second. The Isya’ time, after the time loop, with time-
zone correction is

isya time = (h_isya + (m_isya) / 60 + s_isya /
3600) +timezone

print (isya_ time)

[19.05666667]

To correct this and ensure the resulting prayer time remains within a 24-hour
format,

isya_time %= 24 # Ensure 24-hour clock format
print (isya_ time)
[19.05666667]

To convert into time format,

isya time = float (isya time)

degrees = int (isya time)

decimal part = isya time - degrees
minutes_total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes_ total - minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
isya = “Isya’ Does Not Occur”

else:
isya = f”Isya’ Occurs at {degrees}° {minutes}’
{seconds}"”
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print (isya)
Isya’ Occurs at 19° 3’ 25"

‘Isya prayer time at Jakarta, Indonesia, where Latitude: 6.2088° South,
Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, Date:
21 July 2025, Assume ‘Isya begins at a solar depression of —17 is at 19:3:24.

Exercise 2

Determine the ‘Isya prayer time at Istanbul, Turkey, where Latitude: 41.0082°
North, Longitude: 28.9784° East, Time Zone: GMT+3, Elevation: 40 meters,
Date: 15 August 2025. Use a solar depression angle of —16° to mark the begin-
ning of ‘Isya prayer.

Exercise 3

Determine the ‘Isya prayer time at Tokyo, Japan, with the following details,
Latitude: 35.6762° North, Longitude: 139.6503° East, Elevation: 40 meters,
Time Zone: GMT+9, Date: 16 June 2025. Assume ‘Isya begins when the solar
depression angle reaches 20° below the horizon.

SYURUK

Syuruk is the end of Subh prayer time. It is based on the timing of the sunrise.
This originates from the prophetic saying;

...The beginning of the time for Fajr is when Fajr begins, and its end is when
the sun rises.

Sunrise from the Syuruk is the first visibility of the upper limb of the sun. This
means that the upper limb of the sun must be fully visible from view. Similarly,
the Maghrib refraction and elevation factor also need to be considered. To
determine the time of the Syuruk, assuming the user is located at Sydney
Tower Eye, with Latitude 33.8688° South, Longitude 151.2093° East, on 23
March 2025, where the time zone in effect is GMT + 11, with elevation of 350
meter. First, we need to import function that are needed for the calculation.
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from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat location = -33.8688
long location = 151.2093
timezone = 11

day = 23

month = 3

year = 2025

ele = 350

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day-1)
ts.utc(year, month, day)

Since Syuruk occurs in the morning, we assume the calculation from the day
before. Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)


http://www.skyfield.api
http://www.skyfield.api
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h = Angle(radians=-arccos(side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,

pressure _mbar=1030.0)

Then, determine the time of the sunrise

t, y = almanac.find risings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
print (h,m, s)

[19.] [57.] [29.52933632]

The time of the sunset is 19:57:29, at UTC time. To convert into local time with
GMT + 11.

syuruk_time = float(h + m / 60 + s / 3600 + timezone)
print (syuruk_ time)
30.958202593423238

When calculating times near sunrise, there may be instances where the com-
puted time exceeds 24 hours; the above example is the case. To correct this and
ensure the resulting prayer time remains within a 24-hour format, the follow-
ing code is used to normalize the time

syuruk time %= 24 # Ensure 24-hour clock format

print(gyuruk time)

6.958202593423238

From this moment, we can convert into time format,

syuruk time = float (syuruk time)
degrees = int (syuruk time)
decimal part = syuruk time - degrees
minutes total = decimal part * 60
minutes = int (minutes total)
seconds = round((minutes total - minutes) * 60)
sun_astro = location.at (ts.utc(year, month, day, h, m,
s)) .observe (sun)
sun_alt, , = sun astro.apparent().altaz()
sun_alt, , = sun astro.apparent().altaz()
if sun alt.degrees >= 0:
syuruk = “Syuruk Does Not Occur”
else:


http://www.t.utc.hour,
http://www.t.utc.minute,
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syuruk = f£”Syuruk Occurs at {degrees}® {minutes}’
{seconds}”

print (syuruk)
Syuruk Occurs at 6° 57 30

This means that syuruk at Sydney Tower Eye, with Latitude 33.8688° South,
Longitude 151.2093° East, on 23 March 2025, where the timezone in effect is
GMT + 11, with elevation of 350 meters occurs at 06:57:30.

Exercise 1

Determine the Syuruk (sunrise end) time on 15 July 2025 for a user located in
central Tokyo, Japan, with the following location details:

e Latitude: 35.6762° North

* Longitude: 139.6503° East
¢ Elevation: 40 meters

e Time Zone: GMT +9

Exercise 2

Calculate the Syuruk time for Cape Town, South Africa, on 10 October 2025.
Use the following coordinates:

e Latitude: 33.9249° South
* Longitude: 18.4241° East
e Elevation: 15 meters
e Time Zone: GMT +2

Exercise 3

On 1 January 2025, determine the Syuruk prayer time for a user located in Rio
de Janeiro, Brazil:

e Latitude: 22.9068° South
* Longitude: 43.1729° West
e Elevation: 5 meters

e Time Zone: GMT -3
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Exercise 4

Compute the Syuruk time for Berlin, Germany, on 28 May 2025 using the
following details:

* Latitude: 52.5200° North

* Longitude: 13.4050° East

» Elevation: 34 meters

* Time Zone: GMT +2 (Daylight Saving Time in effect)

SUBH

The beginning of Subh’ prayer time is based on the position of the sky condi-
tion before sunrise. This is based on the prophetic saying.

...Then he prayed Fajr when Fajr (dawn) began...
...then he prayed Subh when the land glowed

The appearance of twilight from the sky is caused by the sun’s continued
ascent below the horizon before sunrise. At a certain angle, known as the solar
depression angle, the sun’s rays begin to be refracted by the atmosphere in a
way that illuminates the night sky. When this critical angle is reached, the first
dim light appears horizontally in the sky, marking the beginning of the Subh
prayer time. However, Islamic scholars differ in their opinions regarding the
exact degree of solar depression that signifies the start of Subh. While many
adopt angles between 15° and 20° below the horizon, there is no unanimous
agreement, and various regions apply different standards based on jurispru-
dential reasoning and observational studies. To determine the Subh prayer
time in Bangkok, where Latitude 13.7563° North, Longitude 100.5018° East
and Time Zone GMT+7, with elevation of 150 meter on 16 June 2025 for 18
degrees of solar depression during Subh, we need to import function that are
needed for the calculation.

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math


http://www.skyfield.api
http://www.skyfield.api
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Put input into the variable

lat location = 13.7563
long location = 100.5018
timezone = 7

day = 16

month = 6

year = 2025

ele = 150

Load ephemeris.

ts = load.timescale ()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day-1)
ts.utc(year, month, day)

Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos(side over hypotenuse))
solar radius degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure mbar=1030.0)


http://www.de440s.bsp
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Then, determine the time of the sunrise

t, y = almanac.find risings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
print (h,m, s)

[22.] [48.] [48.62638382]

Since the Subh prayer occurs before sunrise, it is necessary to perform a time-
based loop starting from the moment of sunrise and backtrack until the solar
altitude reaches 18 degrees of solar depression. The time loop operation is
similar with the previous Asar prayer time loop operation. First determine the
solar altitude,

sun_astro = location.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

print (sun_alt)

-0ldeg 27’ 11.4"

To develop with hour time loop, with the rule of the loop the solar degree does
not pass the altitude of — 18.

# Start with hour
test =1
while True:

# Calculate the Solar Altitude

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)

sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

subh angle = 18

elevation correction = 0.0293 * math.sqgrt (ele)

subh angle actual = -subh _angle

- elevation correction

if sun alt.degrees >= 0:
break

if test > 24:
break


http://www.t.utc.hour,
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if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

h -=1

print (£'Sun Altitude {sun_alt.degrees}, at hour

{n}")

Sun Altitude [-1.27408764], at hour [21.]
Sun Altitude [-14.3007989], at hour [20.]

In the above code, if sun_alt.degrees <= subh_angle_actual is used to deter-
mine whether the solar altitude has reach below 18 degree of depression. From
the output, the sun altitude reach angle below —18 degrees at hour 20. Then
proceed with a minute-level time loop to more precisely determine the exact
minute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h subh = h + 1
test = 1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h subh, m, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 1440:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below

m -= 1

print (£'Sun Altitude {sun alt.degrees}, at minute

{m})

# Increment time in minutes
m _subh = m + 1

Sun Altitude [-14.3007989], at minute [47.]
Sun Altitude [-14.51317791], at minute [46.]
Sun Altitude [-14.72537202], at minute [45.]
Sun Altitude [-14.93737954], at minute [44.]


http://www.location.at
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Sun Altitude [-15.14919881], at minute [43.
Sun Altitude [-15.36082811], at minute [42.
Sun Altitude [-15.57226573], at minute [41.
Sun Altitude [-15.78350995], at minute [40.
Sun Altitude [-15.994559], at minute [39.]

Sun Altitude [-16.20541111], at minute [38.
Sun Altitude [-16.41606451], at minute [37.
Sun Altitude [-16.62651737], at minute [36.
Sun Altitude [-16.83676789], at minute [35.
Sun Altitude [-17.04681421], at minute [34.
Sun Altitude [-17.25665447], at minute [33.
Sun Altitude [-17.4662868], at minute [32.]
Sun Altitude [-17.67570929], at minute [31.
Sun Altitude [-17.88492002], at minute [30.
Sun Altitude [-18.09391709], at minute [29.
Sun Altitude [-18.30269847], at minute [28.

e e e e — e e

— e e

From the printed output above, we can see that the sun altitude reaches below
the required Subh depression degree at minute 28. Therefore, we step back one
minute and proceed with a second-level time loop to more precisely determine
the exact minute when the required Subh depression degree is first reached.

# Once the condition is met for minutes, move to
seconds
test =1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h subh, m subh, s)).observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
if sun alt.degrees >= 0:
break
if test > 86400:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below
-=1
nt (£'Sun Altitude {sun_alt.degrees}, at second

i
1)

s
pr
{s
# Increment time in seconds

s _subh = s +1
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Sun Altitude [-18.30269847], at second [47.62638382]
Sun Altitude [-18.30617632], at second [46.62638382]
Sun Altitude [-18.30965412], at second [45.62638382]
Sun Altitude [-18.31313185], at second [44.62638382]
Sun Altitude [-18.31660952], at second [43.62638382]
Sun Altitude [-18.32008713], at second [42.62638382]
Sun Altitude [-18.32356467], at second [41.62638382]
Sun Altitude [-18.32704216], at second [40.62638382]
Sun Altitude [-18.33051959], at second [39.62638382]
Sun Altitude [-18.33399696], at second [38.62638382]
Sun Altitude [-18.33747427], at second [37.62638382]
Sun Altitude [-18.34095151], at second [36.62638382]
Sun Altitude [-18.3444287], at second [35.62638382]

Sun Altitude [-18.34790582], at second [34.62638382]
Sun Altitude [-18.35138289], at second [33.62638382]
Sun Altitude [-18.35485989], at second [32.62638382]
Sun Altitude [-18.35833683], at second [31.62638382]

From the printed output above, we can see that the solar altitude exceeds the
required Isy’ Solar Depression at second 31. Therefore, we step back one sec-
ond. The Isya’ time, after the time loop, with timezone correction is

subh time = (h_subh + (m_subh) / 60 + s_subh /
3600) +timezone

print (subh_ time)

[28.4925]

To correct this and ensure the resulting prayer time remains within a 24-hour
format,

subh _time %= 24 # Ensure 24-hour clock format

print (subh_ time)

[4.4925]

To convert into time format,

subh time = float (subh time)

degrees = int (subh time)

decimal part = subh time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees >= 0 or test >86400:
subh = “Subuh Does Not Occur”
else:
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subh = f£”Subuh Occurs at {degrees}®° {minutes}’
{seconds}"”

print (subh)
Subuh Occurs at 4° 29" 33"

Subh prayer time at Bangkok where Latitude 13.7563° North, Longitude
100.5018° East and Time Zone GMT+7, with elevation of 150 meter on 16 June
2025 for 18 degree of solar depression is at 04:31:16.

Exercise 1

Determine the Subh prayer time at Jakarta, Indonesia, where Latitude: 6.2088°
South, Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters,
Date: 21 July 2025, Assuming Subh begins at a solar depression of —17°. First,
we need to import function that are needed for the calculation.

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

Put input into the variable

lat_location = -6.2088
long location = 106.8456
timezone = 7

day = 21

month = 7

year = 2025

ele = 50

Load ephemeris.

ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84.latlon(lat_location, long_
location, elevation m=ele)


http://www.skyfield.api
http://www.skyfield.api
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Skyfield require range of calculate date, this is written as;

to
tl

ts.utc(year, month, day-1)
ts.utc(year, month, day)

Then, include the variable of refraction and location elevation

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos(side over hypotenuse))
solar radius degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,

pressure mbar=1030.0)

Then, determine the time of the sunrise

t, y = almanac.find risings(location, sun, tO0, t1,

horizon degrees=-r + h.degrees - solar radius degrees)

h, m, s = t.utc.hour, t.utc.minute, t.utc.second

Since the Subh prayer occurs before sunrise, it is necessary to perform a time-
based loop starting from the moment of sunrise and backtrack until the solar
altitude reaches 17 degrees of solar depression. The time loop operation is
similar with the previous Asar prayer time loop operation. First determine the

solar altitude,

sun_astro = location.at(ts.utc(year, month, day,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

To develop with hour time loop, with the rule of the loop the solar degree does

not pass the altitude of — 17.
# Start with hour

test =1
while True:

# Calculate the Solar Altitude
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sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
subh angle = 17
elevation correction = 0.0293 * math.sqgrt (ele)
subh angle actual = -subh_angle
- elevation correction
if sun alt.degrees >= 0:
break
if test > 24:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

h -=1

In the above code, if sun_alt.degrees <= subh_angle_actual:is used to deter-
mine whether the solar altitude has reached below, then proceed with a min-
ute-level time loop to more precisely determine the exact minute when the
solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h subh = h + 1
test =1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h subh, m, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
if sun alt.degrees >= 0:
break
if test > 1440:
break

if sun alt.degrees <= subh angle actual:

break # Exit the loop if the solar altitude
located below -18 degree

# Increment time in minutes
m subh = m + 1
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Then proceed with a second-level time loop to more precisely determine the
exact minute when the required Subh depression degree is first reached.

# Once the condition is met for minutes, move to
seconds
test =1
while True:
# Calculate the Solar Altitude
sun_astro = location.at(ts.utc(year, month, day,
h subh, m subh, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun
if sun alt.degrees >= 0:
break
if test > 86400:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

# Increment time in seconds
s subh = s +1
The Isya’ time, after the time loop, with timezone correction is
subh time = (h_subh + (m_subh) / 60 + s_subh /
3600) +timezone

print (subh time)
[28.91295064]

To correct this and ensure the resulting prayer time remains within a 24-hour
format,

subh time %= 24 # Ensure 24-hour clock format
print (subh time)
4.91295064

To convert into time format,

subh time = float (subh time)
degrees = int (subh time)
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decimal part = subh time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees >= 0 or test >86400:
subh = “Subuh Does Not Occur”

else:
subh = f£”Subuh Occurs at {degrees}®° {minutes}’
{seconds}"”

print (subh)
Subuh Occurs at 4° 54' 47"

Subh prayer time at Jakarta, Indonesia, where Latitude: 6.2088° South,
Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, Date: 21
July 2025, Assuming Subh begins at a solar depression of —17° is at 04:54:47.

Exercise 2

Determine the Subh (Fajr) prayer time at Khartoum, Sudan on 21 July 2025,
assuming Subh begins when the sun reaches —15° below the horizon. Location
details:

e Latitude: 15.5007° North
» Longitude: 32.5599° East
¢ Elevation: 380 meters

e Time Zone: GMT+2

Exercise 3

Calculate the Subh prayer time in Manila, Philippines for 21 July 2025, using
a —19° solar depression angle. Location details:

¢ Latitude: 14.5995° North

* Longitude: 120.9842° East
¢ FElevation: 16 meters

e Time Zone: GMT+8
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Exercise 4

Compute the Subh prayer time at San Salvador, El Salvador on 21 July 2025,
based on a —20° solar depression. Location details:

e Latitude: 13.6929° North

* Longitude: —89.2182° West
¢ Elevation: 658 meters

¢ Time Zone: GMT-6



Moonsighting
Observation Data
Computation

The determination of new Hijri months is based on the position of the moon
during 29th day of a Hijri month (Mustapha et al., 2024). Either the new Hijri
month is determined using moonsighting, astronomical calculations, or lunar
crescent visibility criteria; knowing the geometric position of the moon is
vital. In the past, the endeavor to calculate the position of the moon during
29th day of Hijri month is an arduous task, and only selected person can carry
out the task. Nowadays, due to the invention of Python programming language
and extensive libraries, the task of calculating the position of the moon can
be conducted with a few lines of code. In this case, the task of calculating the
position of the moon can be calculated using Skyfield.

Let us say, user observation site is Kigali, Rwanda, with Latitude 1.9577°
South, Longitude: 30.1127° East, Elevation: 1,567 meters and Time Zone:
GMT+2. Determine the geometrical position of the moon during for the Hijri
month observation on 27 May 2025. First, install skyfield, and other related
libraries.

pip install skyfield numpy tabulate
Import-related functions

from skyfield import almanac

from skyfield.api import Topos, load

from skyfield import api

import numpy as np

from skyfield.api import N, S, E, W, load, wgs84
from skyfield.api import Topos, load,

Angle, GREGORIAN START

import math

DOI: 10.1201/9781003649120-8 99
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from scipy.ndimage import rotate

import calendar

from tabulate import tabulate

from matplotlib.patches import Arc

import matplotlib.pyplot as plt

from matplotlib.colors import LinearSegmentedColormap
import matplotlib.image as mpimg

from matplotlib.offsetbox import OffsetImage,
AnnotationBbox

Load ephemeris and function

planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

moon = planets[‘moon’]

h maghrib = 0

m_maghrib = 0

ts = load.timescale()

eph = api.load(‘'de440s.bsp’)

The moon is loaded since we calculate the position of the moon. h_maghrib =
0, m_maghrib =0
is declared to mitigate some issue later. Then, input the related variables.

lat location = -1.9577
long location = 30.1127
timezone = 8

year = 2025

month = 3

day = 30

ele = 100

Input the location info and refraction and elevation parameter.

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

from skyfield.units import Angle

from numpy import arccos

from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos(side over hypotenuse))
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solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature C=15.0,
pressure_mbar=1030.0)

Determine the time of sunset.

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h_sunset, m_sunset, s_sunset = t.utc.hour, t.utc.minu
te, t.utc.second

In moonsighting calculations, the sunset time is stored using the variables h_
sunset, m_sunset, s_sunset. This distinction is made to clearly differentiate
it from the moonset time, which will be calculated separately. Then convert
sunset time in time format

sunset time = float(h_sunset + m sunset / 60 + s_
sunset / 3600 + timezone)

)

sunset_time %= 24 # Ensure 24-hour clock format

sunset time = float (sunset time)

degrees = int (sunset time)

decimal part = sunset time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
sunset = f£”{degrees}®° {minutes}’' {seconds}"”

print (sunset)
18° 7' 58"

We can combine the result into a variable using an f-string, as shown above. In
this example, the result is stored in the sunset variable and printed in degree-
minute-second (DMS) format. This corresponds to 18:07:58, which indicates
the time of sunset. Once the sunset time is determined, we can proceed to
calculate the moonset time, which will follow a similar method.

t, y = almanac.find settings(location, moon, tO, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h moonset, m moonset, s moonset = t.utc.hour, t.utc
.minute, t.utc.second

Note the changes from sun to moon in comparison to the previous code. This
is because the previous code is to calculate the sun position, while this code is
used to calculate the moon position. Then convert moonset time in time format


http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.minute,
http://www.t.utc.second
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moonset time = float (h moonset + m moonset / 60 +
s_moonset / 3600 + timezone)

)

moonset_time %= 24 # Ensure 24-hour clock format

moonset time = float (moonset time)

degrees = int (moonset time)

decimal part = moonset time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
moonset = f”{degrees}®° {minutes}’ {seconds}””
print (moonset)

19° 4' 59"

Therefore, the moonset occurs at 19:04:59. Then the value of lag time, the dif-
ference of time between moonset and sunset, can be extracted.

lag time = abs(moonset time - sunset time)
print (lag time)
0.9504272807035683

To calculate lag time, subtract moonset_time and sunset_time. Then make
sure the result is always positive; use the function abs() inside the subtraction
operation. The result is in decimal format; to convert into time format,

degrees = int (lag_time)

decimal part = lag time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
lagtime= f”{degrees}° {minutes}’ {seconds}””
print (lagtime)

0° 57" 2"

The lag time between moonset and sunset is 57 minute and 2 seconds. Next is
to determine the geometrical position of the moon. The geometrical position
of the moon is calculated using a topocentric reference. This means that the
position of the moon is calculated in reflect to the user position on the surface
of the Earth. The calculation is conducted based on the position of the moon
during sunset. To perform the calculation, first we calculate the altitude of the
moon during sunset.

moon_astro = location.at (ts.utc(year, month, day,
h sunset, m sunset)) .observe (moon)


http://www.location.at
http://www.ts.utc
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moon_app = moon_astro.apparent ()

moon_alt, moon az, distance = moon app.altaz()
print (moon_alt)

l2deg 27’ 16.3"

The code structure used to calculate moonset is like the code for calculating
prayer times, such as sunset. The only difference lies in the celestial object
being observed, the sun for prayer times, and the moon for moonsighting. In
this case, the same variables as h_sunset and m_sunset can be reused for deter-
mining the moon’s position during sunset. The moon altitude during sunset
is 12 deg 27’ 16.3”. This format is readable for humans but not suitable for
numerical calculations. To perform further computations, like determining
moon visibility, we need the altitude in decimal degrees. To do this, simply
access the .degrees attribute of the moon_alt variable:

print (moon_alt.degrees)
[12.4545324]

The next important parameter for new moon sighting is arc of vision. The arc
of vision is the altitude difference between the sun’s altitude and moon’s alti-
tude. First, determine the sun’s altitude during sunset.

sun_astro = location.at(ts.utc(year, month, day,
h sunset, m sunset)) .observe (moon)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()
print (sun_alt.degrees)

[-0.92325118]

Next, the difference between sun-moon altitude or Arc of Vision,

arc_of vision = abs(moon_ alt.degrees - sun alt.
degrees)

print (arc_of vision)

[13.37778358]

The arc of vision is 13.3778358. Next is the arc of light. The arc of light is the
angle of separation between sun and moon, or the elongation angle. The arc of
light can be determined with code,

arc_of light = sun app.separation from(moon app)
print (arc_of light.degrees)
[16.57460685]


http://www.moon_app.altaz
http://www.moon_alt.degrees
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
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The arc of light is 13.3778358. Next is the difference in azimuth. The differ-
ence in azimuth is the azimuthal difference between sun azimuth and moon
azimuth. The code to determine the difference in azimuth is as follows

difference azimuth =

abs (moon_az.degrees-sun_az.degrees)
print (difference azimuth)
[9.85833904]

The difference in azimuth between the sun and the moon is 9.85833904°. The
final parameter to consider is the moon age, which refers to the elapsed time
between the moment of conjunction (new moon) and the sunset at the obser-
vation location. This age is a crucial factor in evaluating the likelihood of
crescent visibility. To determine moon age, first determine the Julian date of
the sunset time,

t, y = almanac.find settings(location, moon, tO, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
jd sunset = t.tt

jd sunset= jd _sunset [0]
print (jd_sunset)
2460760.037716627

The code is similar with find sunset code, however the output is changed to t.tt,
as it is in Julian date format. Next, determine the time of moon conjunction
using almanac function,

t0 = ts.utc((year), (month), (day-5))
tl = ts.utc((year), (month), (day+5))
f = almanac.oppositions conjunctions (eph, eph[‘Moon’])

t, vy = almanac.find discrete(t0, tl1, f)

for ti, yi in zip(t, y):
if yi == 1:
jd moon conjuction = format (ti.tt)
else:
None
jd moon conjuction= float (jd moon conjuction)

The time of moon conjunction is computed using almanac.oppositions_con-
junctions function. This function can determine the timing of conjunction


http://www.ts.utc
http://www.ts.utc
http://www.ti.tt
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or opposition, with yi == 1 for conjunction, and yi == 0 for moon opposi-
tion or full moon. —5 and +5 is performed at tO and tl since the conjunc-
tion usually takes a 0 to a few days before the moon observation. Then,
the moon age is computed as the Julian date difference between sunset and
moon conjunction.

moonage = (jd sunset -jd moon conjuction) *24
print (moonage)

There! We got the geometric position of the moon during observation.

Exercise 1

An observer in Istanbul, Turkey, located at 41.0082° North latitude and
28.9784° East longitude, at an elevation of 39 meters and under the GMT+3
time zone, intends to sight the new moon that would indicate the beginning of
the month of Shawal. The observation is to be made on 29 March 2025, which
corresponds to the 29th day of Ramadan 1446H. Determine the geometrical
position of the moon during this date and time.

Exercise 2

In Cape Town, South Africa, an observer situated at 33.9249° South latitude
and 18.4241° East longitude, at an elevation of 15 meters and within the GMT+2
time zone, will attempt to observe the crescent moon on 6 June 2025. This date
aligns with the 29th day of Zulkaedah 1446H and is critical for determining
the beginning of the month of Zulhijjah. Calculate the geometrical position of
the moon at this location and date.

Exercise 3

Assume a user in Jakarta, Indonesia, with coordinates of 6.2088° South lati-
tude and 106.8456° East longitude, observes the moon from an elevation of
50 meters above sea level. The local time zone is GMT+7. The observation is
planned for 29 March 2025, corresponding to 29 Ramadhan 1446H. The task
is to determine the geometrical position of the moon for Shawwal crescent
sighting on that evening.
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Exercise 4

In Los Angeles, USA, an observer located at 34.0522° North latitude and
118.2437° West longitude, at an elevation of 71 meters and within the GMT-7
time zone, intends to observe the moon on 6 June 2025. This corresponds to
the 29th day of Zulkaedah 1446H. Determine the geometrical position of the
moon during sunset at this location to evaluate the possibility of crescent sight-
ing for Zulhijjah.



Qiblah Compass
Visualization

The determination of Rashdul Kiblat is universally suitable for all days in a
year. There are times when the Rashdul Kiblat is not applicable for a particular
day or time. This is due to the solar position. Therefore, another alternative is
to determine the Qibla is based on the degree of solar azimuth. So, to create
the visualization of the Qibla compass, it must be based on the solar azimuth
degree. The solar azimuth degree can be calculated using Skyfield, while the
Qibla direction can be calculated using the previous formula; therefore, the
angle between the solar azimuth degree and Qibla direction can be determined
using the subtraction between the solar azimuth degree and Qibla direction
degree. This angle of subtraction can be visualized.

Visualization of the angle between the sun azimuth and the direction of
the Qibla can be determined using matplotlib function of polar plot. Matplotlib
is a visualization function that is embedded with Python. Matplotlib can be
used to create bar graphs, line graph, and many more graphs. Matplotlib can
visualize the angle of difference between solar azimuth and Qibla direction
using polar plot. Polar plot is plot of magnitude |G(jo)H(jo)! versus phase
angle 2(G(jo)H(jw)) in polar coordinates, and the value of frequency i.e. ® is
varied from O to oo. In polar plot magnitude of transfer function is plotted to
distance from origin and phase angle is plotted from positive real x-axis. Polar
plot is used in Nyquist plot to determine the stability of closed loop control
system from its open loop frequency response. The polar plot has the angle
scale from 0 degree to 360 degree. This would be perfect for the determination
of Qibla direction from the position of the solar azimuth.
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QIBLA DIRECTION VISUALIZATION
ON POLAR PLOT

The instruction to use Polar Plots for Qibla direction visualization in Python is

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

where

fig: The figure object, which is the overall container
for the plot.

ax: The axes object, which represents the polar

subplot.

subplot _kw={'projection’: ‘polar’}: Configures the
axes to have a polar projection. The output for the
code

import matplotlib.pyplot as plt

# Create the polar plot

fig, ax = plt.subplots(subplot kw={‘'projection’:
‘polar’}, figsize=(8, 8))

This code will output as shown in Figure 9.1.

Notice that the direction of 0 degree start from the right side of the com-
pass. To rearrange the polar plot, with O degree located at the forward/upside
of the compass, the code is

import matplotlib.pyplot as plt

# Create the polar plot

fig, ax = plt.subplots(subplot kw={‘'projection’:
‘polar’}, figsize=(8, 8))

ax.set theta direction(-1) # Set clockwise direction
ax.set_theta zero location('N’) # Set 0° to the top
(North)

Where ax.set_theha_zero_location (‘N”) will set the top as the starting loca-
tion for the compass, which is the North. While ax.set_theta_direction(-1),
will set the direction of the compass to be in clockwise direction, following the
actual compass direction.

The direction of the Qibla follows the previous Qibla equation; let’s say
the direction of the Qibla is 291. In the code, this can be expressed as

gibla direction deg = 291


http://www.matplotlib﻿.﻿pyplot
http://www.matplotlib﻿.﻿pyplot
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90°

270°

FIGURE 9.1 Generic polar plot.

The direction of the Qibla in the polar plot is read in radians form; therefore,
to convert into radians form, the code is expressed as

gibla direction rad = np.deg2rad(gibla direction deg)

this will convert the angle degree to radians form. After that, to visualize the
Qibla direction in the polar plot, the code is as follows

ax.plot ([0, gibla direction rad]l, [0, 11, label=‘Qibla
Direction’, color=‘blue’, linewidth=2)

where,

ax.plot:


http://www.ax﻿.﻿plot
http://www.ax.plot:
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This is a method to plot data on the specified axes (ax), in this case, a polar
axis created earlier.

Arguments: [0, gibla direction rad] and [0, 1]:

* [0, gibla_direction_rad]: This is the radial angle data in radians. The
line starts at O radians (the center) and extends to qibla_direction_
rad, which represents the direction of the Qibla in polar coordinates.

e [0, 1]: This is the radius data. The line starts at a radius of O (the
center) and extends outward to a radius of 1.

label="Qibla Direction’:

* This provides a label for the line, which can be displayed in a legend
if added to the plot.

color='blue’:

* Sets the color of the line to blue.
linewidth=2:

» Specifies the thickness of the line as 2 units.

The output for this code is shown in Figure 9.2.

Exercise 1: Visualize a Qibla Direction
Using Location Latitude of 39.12 North,
and Longitude of 80.11 East

First, determine the Qibla direction. To do this, first we insert the variable
required for the calculation.

¢_Location 39.12
A_Location = 80.11
¢_Kaabah = 21.4225
A_Kaabah = 39.8262
Difference Longitude = abs (A _Location-A Kaabah)
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0°

FIGURE 9.2 Polar plot with Qibla location.

Then, we performed the calculation.

#Calculation of Qibla Direction
import math

A = math.sin(math.radians (abs (Difference Longitude)))
B = math.cos(math.radians (¢ Location))*math.tan(math.r
adians (¢_Kaabah))

C = math.sin(math.radians (¢_Location)) * math.cos(m
ath.radians (Difference Longitude))

D = A/ (B-Q)

0 = math.degrees (math.atan (D))

#Determine the Azimuth of the Qibla
if Difference Longitude > 180:
delta A = 360 - Difference Longitude


http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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else:
delta_A = Difference Longitude

if 6 > 0:
if A Location > A _Kaabah:
quadrant = “UB” # Utara Barat
elif A Location <= A_Kaabah:
quadrant = “UT” # Utara Timur
elif A Location < 0:
if ¢ >= 180:

quadrant = “UB”
else:
quadrant = “UT”
elif 6 < 0:
if A _Location > A _Kaabah:
quadrant = “SB” # Selatan Barat
elif A Location <= A _Kaabah:
quadrant = “ST” # Selatan Timur

elif A Location < 0:
if ¢ >= 180:

quadrant = “SB”
else:
quadrant = “ST”
if quadrant == “UB”:
azimuth kiblat = 360 - 0
elif quadrant == “SB”:
azimuth kiblat = 180 - 0
elif quadrant == “UT”:
azimuth kiblat = 0
elif quadrant == “ST”:

azimuth kiblat = 180 + 0
# To Convert in Degree Form

degrees = int (azimuth kiblat)

decimal part = azimuth kiblat - degrees
minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

print (£’ The azimuth of the Qibla for Location with
coordinate {¢ Location} Latitude, {A Location}
Longitude, is {degrees}° {minutes}' {seconds}”’)



9 e Qiblah Compass Visualization 113

The azimuth of the Qibla for Location with coordinate
39.12 Latitude, 80.11 Longitude, is 254° 41’ 48"

The Qibla direction for the given location is 254° 41’ 48". Next, is to create the
polar plot. First, create an empty polar plot.

import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

The above code will result in an empty polar plot. And then, to align the top of
the polar plot as North, or 0 degree.

import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

ax.set theta direction(-1) # Set clockwise rotation
ax.set theta zero location('N’) # Set 0° (North) at
the top

Ok now, the top of the polar plot is O degree, similar with the alignment that we
usually found on magnetic compass. Then is to label the Qibla direction based
on the Qibla direction calculated before.

import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

ax.set theta direction(-1) # Set clockwise rotation
ax.set theta zero location('N’) # Set 0° (North) at
the top

# Convert Qibla direction to radians for plotting
gibla direction rad = np.deg2rad(azimuth kiblat)
ax.plot ([0, gibla direction rad], [0, 1], label=
f'oibla: {azimuth kiblat:.2£}°’, color=‘blue’,
linewidth=2)

This will label the Qibla direction (Figure 9.3).


http://www.matplotlib.pyplot
http://www.matplotlib.pyplot
http://www.matplotlib.pyplot
http://www.ax.plot
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0°

FIGURE 9.3 Polar plot with Qibla direction.

SUN AZIMUTH VISUALIZATION
ON POLAR PLOT

After the Qibla direction can be computed and visualized in the polar plot,
now it is for the solar azimuth computation. The solar azimuth computation
can be performed using Skyfield. To calculate the sun azimuth at any given
time and location, is as follows:

from skyfield.api import load

from skyfield.api import N,S,E,W, wgs84

location = earth + wgs84.latlon(location_latitud * N,
location_longitud * E, elevation_m=0)

ts = load.timescale()


http://www.skyfield﻿.﻿api
http://www.skyfield﻿.﻿api
http://www.wgs84﻿.﻿latlon
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eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

earth = planets[‘earth’]

sun = planets[‘sun’]

astro = location.at(ts.utc(year, month, day,
hour-timezone,minute)) .observe (sun)

sun_app = astro.apparent ()

sun_alt, sun az, = sun _app.altaz()

Explanation of Each Line

from skyfield.api import load:

Imports the load function from the skyfield.api module.
The load function is used to fetch data files (e.g., timescales, ephem-
eris files) necessary for astronomical computations.

from skyfield.api import N, S, E, W, wgs84:

* Imports the constants N, S, E, W (representing the cardinal direc-
tions: North, South, East, and West) and the wgs84 object from the
skyfield.api module.

* wgs84 is a geodetic model used for Earth-related computations,
such as converting latitudes and longitudes to 3D coordinates.

ts = load.timescale() :

* Loads a timescale object, which is used to work with time in
Skyfield.

* The timescale object provides methods to define and manipulate
time (e.g., UTC, TT).

eph = load(‘'de421.bsp’):

* Loads the JPL (Jet Propulsion Laboratory) DE421 ephemeris file.
This file contains precise positions and velocities for celestial bodies
in the solar system.

» ‘de421.bsp’ is a binary file that Skyfield uses to compute positions of
planets and other bodies.


http://www.de440s.bsp
http://www.de440s.bsp
http://www.location﻿.﻿at
http://www.ts﻿.﻿utc
http://www.sun_app﻿.﻿altaz
http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.de421.bsp
http://www.de421.bsp
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planets = load(‘'de421.bsp’):

* This line is redundant (repeats the loading of ‘de421.bsp’) but essen-
tially assigns the same ephemeris data to a new variable planet.

* It’s commonly done to improve code readability (e.g., distinguishing
between different use cases for the same data file).

earth = planets[‘earth’]:

» Extracts the Earth object from the ephemeris data. This object allows
calculations involving Earth’s position, including observer locations.

sun = planets[‘sun’]:

» Extracts the sun object from the ephemeris data. This object can be
used to calculate the sun’s position relative to Earth or other bodies.

location = earth + wgs84.latlon(location_latitud * N, location_longitud * E,
elevation_m=0)

Earth:

* Represents the Earth in the solar system as defined by the loaded
ephemeris (de421.bsp).
* This object is used as the base reference for observer locations.

wgs84.latlon(location latitud * N, location longitud * E,
elevation m=0) :

* A geodetic model representing Earth’s shape (latitude, longitude,
elevation).

* Converts the geographical coordinates into a 3D position in space
relative to Earth’s center.

location_latitud * N:

* Multiplies the latitude value (location_latitud) by N (North), ensur-
ing it’s interpreted as a northern hemisphere coordinate. If in the
southern hemisphere, you’d use S instead.

location longitud * E:

* Multiplies the longitude value (location_longitud) by E (East). If in
the western hemisphere, you'd use W.


http://www.de421.bsp
http://www.de421.bsp
http://www.wgs84﻿.﻿latlon
http://www.de421.bsp
http://www.wgs84.latlon
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elevation m=0:

» Specifies the elevation (in meters) of the location. Here, it is set to 0,
which corresponds to sea level.

earth +

* Combines the Earth’s position in the solar system with the observ-
er’s location on Earth. The resulting location object represents a
specific point on Earth as it moves through space.

astro = location.at(ts.utc(year, month, day, hour,minu
te)) .observe (sun)

location.at (ts.utc(year, month, day, hour, minute)) :

» Computes the position of the specified location on Earth at the given
UTC time.

* ts.utc(year, month, day, hour, minute): Defines the time in
Coordinated Universal Time (UTC).

* This step determines where the Earth (and hence the observer) is in
space at that moment.

.observe (sun) :

e Calculates the apparent position of the sun as seen from the loca-
tion at the specified time.
» Considers the relative positions of the observer, Earth, and sun.

sun_app = astro.apparent ()

astro.apparent () :

* Converts the geometric position of the sun (as computed by astro)
into its apparent position by:

1. Accounting for light-time delay: The sun’s observed position
includes the time it takes for light to travel from the sun to the
observer.

2. Including aberration of light: Adjusts for the motion of the
Earth while observing the sun.


http://www.location﻿.﻿at
http://www.ts﻿.﻿utc
http://www.location.at
http://www.ts.utc
http://www.ts.utc
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sun_app:

» This variable now contains the sun’s apparent position as seen by
the observer, accounting for these effects.

sun_alt, sun az, sun distance = sun app.altaz()
Explanation of the Outputs:

sun_alt (Altitude):

* The angular height of the sun above or below the horizon (in
degrees).

* Positive values: The sun is above the horizon.

e Zero: The sun is on the horizon (sunrise or sunset).

* Negative values: The sun is below the horizon (nighttime).

sun_az (Azimuth) :

* The compass direction to the sun (in degrees).
* Measured clockwise from North:

¢ (0°= North
¢ 90° = East
¢ 180° = South
e 270° = West

sun_distance (Distance) :

The distance to the sun from the observer’s location, measured in
Astronomical Units (AU).
1 AU = 149.6 million kilometers, which is the average Earth-sun distance.

Exercise 2: Calculate the Solar Azimuth
at the Latitude of 39.12 North, and
Longitude of 80.11 East, in 6+ Timezone,
on 13 April 2024, during 15:34

First, determine the sun azimuth. The initial step is to input the required
variable.


http://www.sun_app.altaz
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import math

from skyfield.api import load, N, E, wgs84 # Skyfield
for astronomical calculations

import calendar # For handling dates and times

lat location = 39.12
long location = 80.11
timezone = 6

year = 2025

month = 4

day = 13

ele = 100

The idea is that the user can use the position of the sun to determine the direc-
tion of the Qibla without requiring timing of the Rashdul Qibla. We can use
any time of the day when the sun is located above the horizon. For this case,
we use the position of sun azimuth at 15:34. To input the variable for hour and
minute,

hour = 15
minute = 34

And then, to determine the sun azimuth

# Load planetary ephemeris data (precise astronomical
positions)

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

# Get Earth and Sun objects from the ephemeris
earth = planets[‘earth’]

sun = planets[‘sun’]

location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

# Create timescale object and set observation time

ts = load.timescale()
t0 = ts.utc(year, month, day)
tl = ts.utc(year, month, day + 1)


http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
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sun_astro = location.at(ts.utc(year, month, day,
hour-timezone, minute)) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()
print (sun_az.degrees)

From the sun azimuth, we can visualize the sun azimuth using the polar plot.

import matplotlib.pyplot as plt
import numpy as np

# Create polar plot (compass-style visualization)
fig, ax = plt.subplots(

subplot _kw={‘projection’: ‘polar’}, # Polar
coordinate system
figsize=(8, 8) # 8x8 inch figure

# Configure polar plot:

ax.set theta direction(-1) # Clockwise rotation
(standard for compass
bearings)

ax.set theta zero location('N’) # 0° at top (North)

# Convert sun direction from degrees to radians for
plotting
sun direction rad = np.deg2rad(sun_az.degrees)

# Plot a line from center (0,0) to edge (1) in sun’s

direction

ax.plot (
[0, sun direction rad], # Angle in radians
[0, 11, # Distance from center
label=f’Sun Az: {sun_az.degrees:.2£f}°’, # Legend

label

color=‘orange’, # Color of line
linewidth=2 # Line thickness

# Display the plot
plt.show ()

This results as shown in Figure 9.4.


http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.matplotlib.pyplot
http://www.ax.plot
http://www.plt.show
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0°

180°

FIGURE 9.4 Polar plot with sun azimuth direction.

SUN AZIMUTH AND QIBLA DIRECTION
VISUALIZATION ON POLAR PLOT

Now, let’s combine polar plot for Qibla direction and sun azimuth.

Exercise 3: Visualize Qibla Direction and
the Solar Azimuth on 13 April 2024, during
15:34, Using Location Latitude of 39.12
North, and Longitude of 80.11 East

The sun azimuth and Qibla direction visualization can be combined when both
visualization codes are run on the same command console. First, run the Qibla
direction calculation code.



122 Python for Islamic Astronomy

¢_Location = 39.12
A_Location = 80.11
¢ Kaabah = 21.4225
A_Kaabah = 39.8262
Difference Longitude = abs (A Location-A Kaabah)

#Calculation of Qibla Direction
import math

A = math.sin(math.radians (abs (Difference Longitude)))
B = math.cos(math.radians (¢ Location))*math.tan(math.r
adians (¢_Kaabah))

C = math.sin(math.radians (¢_Location)) * math.cos(m
ath.radians (Difference Longitude) )

D = A/ (B-C)

0 = math.degrees (math.atan (D))

#Determine the Azimuth of the Qibla
if Difference Longitude > 180:

delta A = 360 - Difference_Longitude
else:

delta A = Difference Longitude

if 06 > 0:
if A _Location > A _Kaabah:
quadrant = “UB” # Utara Barat
elif A Location <= A _Kaabah:
quadrant = “UT” # Utara Timur
elif A Location < 0:
if ¢ >= 180:

quadrant = “UB”
else:
quadrant = “UT”
elif 6 < 0:
if A _Location > A _Kaabah:
quadrant = “SB” # Selatan Barat
elif A Location <= A _Kaabah:
quadrant = “ST” # Selatan Timur
elif A Location < 0:
if ¢ >= 180:
quadrant = “SB”
else:
quadrant = “ST”
if quadrant == “UB”:

azimuth kiblat = 360 - 0


http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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elif quadrant == “SB”:
azimuth kiblat = 180 - 0

elif quadrant == “UT”:
azimuth kiblat = 0

elif quadrant == “ST”:
azimuth kiblat = 180 + 0

# To Convert in Degree Form

degrees = int (azimuth kiblat)

decimal part = azimuth kiblat - degrees
minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

print (£’ The azimuth of the Qibla for Location with
coordinate {¢ Location} Latitude, {A Location}
Longitude, is {degrees}° {minutes}' {seconds}”’)

Then the Sun Azimuth code

# Import required libraries

import math

from skyfield.api import load, N, E, wgs84 # Skyfield
for astronomical calculations

import calendar # For handling dates and times

lat location = 39.12
long location = 80.11

timezone = 6
year = 2025
month = 4
day = 13

ele = 100
hour = 15
minute = 34

# Load planetary ephemeris data (precise astronomical
positions)

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

# Get Earth and Sun objects from the ephemeris
earth = planets[‘earth’]
sun = planets[‘sun’]


http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

# Create timescale object and set observation time

ts = load.timescale()

t0 = ts.utc(year, month, day)

tl = ts.utc(year, month, day + 1)

sun_astro = location.at(ts.utc(year, month, day,

hour-timezone, minute)) .observe (sun)
sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()
print (sun_az.degrees)

Then run the combination of the visualization code. The combination code
requires two important variables, sun azimuth as sun_az.degrees, and Qibla
Direction as azimuth_kiblat.

import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

ax.set theta direction(-1)

ax.set theta zero location(‘'N’)

# Plot Qibla Direction (blue line)

gibla direction rad = np.deg2rad(azimuth kiblat)
ax.plot ([0, gibla direction rad], [0, 1], label=
f'Qibla: {azimuth kiblat:.2f}°’, color=‘blue’,
linewidth=2)

# Plot Sun Azimuth (orange line)
sun direction rad = np.deg2rad(sun_az.degrees)
# Plot a line from center (0,0) to edge (1) in sun’s

direction
ax.plot (
[0, sun direction rad], # Angle in radians
[o, 11, # Distance from center
label=f’Sun Az: {sun az.degrees:.2£f}°’, # Legend
label
color=‘orange’, # Color of line

linewidth=2 # Line thickness


http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.matplotlib.pyplot
http://www.ax.plot
http://www.ax.plot
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The resulting code generates a compass displaying both the Sun’s azimuth and
the Qibla direction. However, it currently lacks labels to help users interpret
the visualization. To enhance its usability, the visual output should be updated
with clear, descriptive labels.

import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(subplot kw={‘projection’:
‘polar’}, figsize=(8, 8))

ax.set theta direction(-1)

ax.set theta zero location(‘'N’)

# Plot Qibla Direction (blue line)

gibla direction rad = np.deg2rad(azimuth kiblat)
ax.plot ([0, gibla direction rad], [0, 1], label=
f'oibla: {azimuth kiblat:.2£}°’, color=‘blue’,
linewidth=2)

# Plot Sun Azimuth (orange line)

sun direction rad = np.deg2rad(sun_az.degrees)

# Plot a line from center (0,0) to edge (1) in sun’s

direction

ax.plot (
[0, sun direction rad], [0, 1],label=f’Sun
Az: {sun_az.degrees:.2f}°’,
color=‘orange’,linewidth=2

plt.title(f’Visualization of Qibla and Sun Azimuth\
nLat: {lat location}° | Long: {long location}° \n{day}
{month} {year}, {hour}:{minute} Local Time\n’, pad=20)
plt.legend(loc="upper right’)

plt.show()

Figure 9.5 shows a polar plot; it’s like a compass that shows two important
directions: where the Qibla is (marked by the dashed line) and where the sun
is at a particular time (shown with the dashed and dotted line). Right above the
plot, you’ll see the exact location it’s based on, with the latitude and longitude,
as well as the local date and time. That information is important because the
direction of both the Qibla and the sun changes depending on where you are
and what time it is.

Now, if you look around the circle, you’ll notice numbers like 0°, 90°,
180°, and 270°. These represent directions: 0° is North, 90° is East, 180° is


http://www.matplotlib.pyplot
http://www.ax.plot
http://www.ax.plot
http://www.plt.title
http://www.plt.legend
http://www.plt.show
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Visualization of Qibla and Sun Azimuth
Lat: 39.12° | Long: 80.11°
13 4 2025, 15:34 Local Time

0°

== Qibla: 254.70°
Sun Az: 244.25°

FIGURE 9.5 Polar plot of the sun azimuth and Qibla direction.

South, and 270° is West. So, imagine this as if you’re standing inside a com-
pass, and each degree tells you which way you’re facing.

To use this, start by focusing on the blue line; that’s the Qibla direction for
your location. It tells you the exact angle you need to face to pray toward the
Kaaba in Makkah. If you have a compass or a compass app on your phone, just
rotate yourself until you’re aligned with that degree. That’s your Qibla.

Now here’s where it gets even more helpful, notice the orange line? That
shows where the sun is at the given time. If you’re outdoors and the sun is vis-
ible, you can use its position to help you find the Qibla without needing a com-
pass. One simple way is to use something like a water bottle or any object that
stands upright. Place it on a flat surface and observe where its shadow falls.
The shadow will point directly away from the sun’s direction.
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Now, look at the diagram again and find the orange line; that’s the sun’s
azimuth. Then compare it to the blue line, which shows the Qibla direction.
The angle between these two lines tells you how much you need to rotate from
the sun’s position to face the Qibla. For example, if the Qibla is to the left of the
sun’s position on the plot, you would turn your body that same amount to the
left from the shadow’s direction. This way, the shadow becomes your guide,
and with just a bottle and this plot, you can figure out the Qibla direction even
without technology. Pretty handy, right?

So, in short, this plot helps you see both where the Qibla is and where the
sun is at a specific time, which can be useful, especially when you don’t have
a digital compass handy but can see the sun.

Exercise 4

Visualize the Qibla direction and the solar azimuth on August 17, 2025, at
14:40 local time, for a location with latitude 36.74° South and longitude 71.06°
West (near Chillan, Chile). The location has an elevation of 150 meters above
sea level, and the local timezone is UTC-4 (Chile Standard Time). Use this
information to generate a polar plot showing both the direction of the Qibla
and the azimuth of the sun at that moment.

Exercise 5

Visualize the Qibla direction and the solar azimuth on August 31, 2025, at
09:23 local time, for a location with latitude 48.85° North and longitude 2.35°
East (Paris, France). The location has an elevation of 35 meters above sea level,
and the local timezone is UTC+2 (Central European Summer Time). Generate
a polar plot to visualize both the Qibla direction and the position of the sun at
that specific time.

Exercise 6

Visualize the Qibla direction and the solar azimuth on October 10, 2025, at
16:10 local time, for a location with latitude 1.29° North and longitude 103.85°
East (Singapore). The location has an elevation of 15 meters, and the local
timezone is UTC+8 (Singapore Standard Time). Generate a plot that shows the
sun’s azimuth alongside the Qibla direction.
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Exercise 7

Visualize the Qibla direction and the solar azimuth on December 5, 2025, at
07:00 local time, for a location with latitude 40.71° North and longitude —74.01°
West (New York City, USA). The location has an elevation of 10 meters above
sea level, and the local timezone is UTC-5 (Eastern Standard Time). Create
a visualization to compare the sun’s position with the Qibla direction during
sunrise hours.



Sun Position 1 O
during Prayer

Times Visualization

VISUALIZING THE SUN POSITION

Prayer times are determined by the sun’s position relative to the observer. Each
prayer time corresponds to a specific solar event:

1. Zuhur begins when the sun reaches its highest point (zenith) in the
sky, directly above the observer’s location (solar noon).
2. Asr starts when the length of an object’s shadow equals its actual
height (or twice its height, depending on the school of thought).
3. Maghrib begins at sunset, when the sun completely disappears
below the horizon.
4. Isha and Fajr depend on atmospheric twilight caused by the sun’s
diffraction below the horizon.
» Isha begins when the sky is fully dark (astronomical twilight
ends).
» Fajr begins at dawn when the first light appears (astronomical
twilight begins).
5. Sunrise marks the end of Fajr and the beginning of daytime.

This visualization helps illustrate these key solar positions, making it easier to

understand the astronomical basis of Islamic prayer times. Before diving into
the code, let’s first understand the objective and the expected output:

DOI: 10.1201/9781003649120-10 129
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A. Objective
We want to create a simple visualization that shows:

1. The position of an observer (stick figure) at a certain location.
2. The position of the sun in the sky at a specific altitude angle.
3. The horizon line as a reference (0°).

B. Expected Output
A plot containing the following elements:

1. Green line: Horizon (ground level).

2. Simple human figure: Representation of the observer.
3. Orange circle: The sun at a certain elevation.

4. Dashed line: Line of sight from the observer to the sun.

To visualize the position of the sun based on the observer, the step is as follows:

1. Import Libraries: Use matplotlib for plotting and numpy for math-
ematical calculations.
2. Setup Positions:
* Observer coordinates (observer_x, observer_y).
e Sun’s altitude angle (altitude_angle).
3. Calculate Sun Position Based on the Angle (sun_x, sun_y).
4. Plot the Visualization:
e Draw the horizon as a straight line.
* Represent the sun as an orange dot.
* Draw a stick figure (if an image is available).

Here is the Complete Code with Inline Explanations, but first, install related

libraries.

Import Library

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image


http://www.matplotlib.pyplot
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import requests
import io # Import io to handle the image data in
memory

Set Observer and Sun Positions

observer x, observer y = 5, 0 # Observer’s position on
the horizon

altitude angle = 40 # Angle in degrees (negative for
below horizon)

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun

Calculate the Sun’s Position Based on the Angle

sun_x = observer x - distance to sun # Place the Sun
to the left of the observer

sun_y = observer y + np.tan(np.radians(altitude
angle)) * distance_to_sun # Calculate vertical
position

Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 101, [0, 0], color=“green”, linewidth=2,
label="Horizon”)

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes


http://www.np﻿.﻿tan
http://www.ax﻿.﻿plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
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# Open the image from the downloaded content
stick figure = Image.open(io.BytesIO(response.
content))

# Setup position of stick figure (on the horizon)
stick x, stick y =5, 0

ax.imshow(stick figure, extent=(stick x - 0.3, stick x
+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot(sun_x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_yl, color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)

# Add altitude scale

ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text(-0.5, 0, “Horizon (0°)”, va=“center”,
ha=“right”, fontsize=10, color=“green”)
ax.text(-0.5, sun_y, f£”Sun Position ({altitude
angle}®)”, va=“center”, ha=“right”, fontsize=10,
color="orange”)

# Adjust the plot
ax.set x1im(0, 10)
ax.set ylim(-1.5, 5)

# Add labels and legend

ax.axis(“off"”)

ax.legend(loc="upper right”)

ax.set title(“Sun’s Altitude Visualization”,
fontsize=14)

plt.show ()

The result of the code implementation above is shown in Figure 10.1.

This visualization demonstrates how solar altitude angles (like those used
to determine prayer times) can be represented geometrically from an observ-
er’s perspective.


http://www.Image.open
http://www.ax.imshow
http://www.ax﻿.﻿plot
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Sun's Altitude Visualization

= Horizon
sun
-~ Line of Sight

{orizon (0

FIGURE 10.1 Visualization of sun position in respect to an observer.

Exercise 1: Calculating Sun’s Altitude
Angles for Prayer Times

Use Python’s skyfield library to calculate the sun’s altitude angle at specific
prayer times (e.g., Asr) for given coordinates and dates.

For example, if asar prayer time on 13 November 2024, lat 3, long 101,
timezone 8 is 4:32, the determination of the sun’s altitude angle is:

Skyfield Installation

lpip install skyfield

# 2. Library Imports

from skyfield.api import load, wgs84

from skyfield.almanac import find transits,find
settings, find risings

from datetime import datetime, timedelta

import math

# 3. Load Astronomical Data
ts = load.timescale()

eph = load(‘'de440s.bsp’)
sun = eph[‘'Sun’]


http://www.skyfield.api
http://www.de440s.bsp
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# 4. Define Observer’s Location
latitude=3

longitude = 101

timezone = 8

# 5. Define Date and Time
day = 13

month = 11

year = 2024

hour = 16
minute = 32
month name = calendar.month name [month]

# 6. Initialize Observer Location
observer = eph[‘Earth’] + wgs84.latlon(latitude,
longitude)

# 7. Calculate Sun’s Apparent Position

sun_astro = observer.at (ts.utc(year, month, day, hour,
minute)) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

# 8. Output the Sun’s Altitude

print (f'the Altitude of Sun at Asr prayer time on
{day} {month name} {year}, at coordinate lat:
{latitude}, long: {longitude}, tz: {timezone}, at
{hour}:{minute} Local Time is {sun alt.degrees}’)

This Python code calculates the altitude of the Sun (in degrees) at a specific
location, date, and time using the Skyfield library. Here’s how the code works:

Library Imports

» skyfield.api: Provides tools to load astronomical data and calculate
celestial positions.

» skyfield.almanac: Contains functions for calculating astronomical
events, though not directly used here.

* datetime, timedelta: Handles date and time manipulation.

* math: Not used in this snippet but available for rounding operations
if needed.


http://www.wgs84.latlon
http://www.observer.at
http://www.ts.utc
http://www.sun_app.altaz
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Load Astronomical Data
ts = load.timescale()
eph = load(‘'de440s.bsp’)
sun = eph[‘'Sun’]

* ts = load.timescale(): Initializes a timescale object for handling
time-related calculations.

* eph = load(‘de440s.bsp’): Loads the DE440s ephemeris file con-
taining accurate positional data for celestial objects.

* sun = eph[‘Sun’]: Loads positional data for the Sun.

Define Observer’s Location

latitude = 3
longitude = 101
timezone = 8

* latitude and longitude: Specify the geographic coordinates of the

observer. These coordinates correspond to a location in Malaysia.
* timezone: The local timezone offset from UTC (Malaysia = +8).

Define Date and Time

day = 13
month = 6
year = 2024
hour = 16
minute = 32

* Specifies the exact date (June 13, 2024) and time (16:32 in local
time) for which the sun’s altitude will be calculated.

Initialize Observer Location

observer = eph[‘Earth’] + wgs84.latlon(latitude,
longitude)

* Combines the Earth’s position with the observer’s location using the
WGS84 geodetic system.


http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
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Calculate Sun’s Apparent Position

sun_astro = observer.at (ts.utc(year, month, day, hour
- timezone, minute)) .observe (sun)
sun_app = sun_astro.apparent ()

e ts.utc(year, month, day, hour — timezone, minute): Converts the
local time to UTC by subtracting the timezone offset (16:32 local
time — 08:32 UTC).

* observer.at(): Specifies the observer’s position at the given UTC
time.

» observe(sun): Calculates the Sun’s relative position in the sky from
the observer’s location.

» apparent(): Adjusts for atmospheric effects (e.g., refraction) to pro-
vide the apparent position of the Sun.

Calculate Sun’s Altitude

sun_alt, sun az, distance = sun app.altaz()

 altaz(): Computes the Sun’s altitude, azimuth, and distance from

the observer.

e sun_alt: The altitude of the Sun in degrees (angle above the
horizon).

e sun_az: The azimuth of the Sun in degrees (angle measured
clockwise from true north).

¢ distance: The distance between the observer and the Sun (not
used here).

Output the Sun’s Altitude

print (f'the Altitude of Sun during Asr prayer time on
{day} {month name} {year}, at coordinate lat:
{latitude}, long: {longitude}, tz: {timezone}, at
{hour}:{minute} Local Time is {sun alt.degrees}’)

e sun_alt.degrees: Converts the altitude from radians (default
Skyfield unit) to degrees and prints it.
» The value represents the sun’s angular elevation above the horizon:


http://www.observer.at
http://www.ts.utc
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http://www.observer.at
http://www.sun_app.altaz

10 e Sun Position during Prayer Times Visualization 137

the Altitude of sun during Asr prayer time on 13
November 2024, at coordinate lat: 3, long: 101, tz: 8,
at 16:32 Local Time is 33.77219002658052

VISUALIZATION OF SUN POSITION
DURING ZUHUR PRAYER TIME

Exercise 2: Visualizing the Sun’s
Altitude at Zuhur Prayer Time for
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Zuhur prayer
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone:
UTC+8 ) on December 19, 2024, with elevation of 100 m.

First, determine the time of Zuhur using the given location.

#Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

#Load Ephemeris Data and Planet Objects
ts = load.timescale()

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

earth = planets[‘earth’]

sun = planets[‘sun’]

# Variable Input

lat location = 39.9
long location = 116.4
timezone = 8

day = 19

month = 12

year = 2024

ele = 100


http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
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#input into
location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

#Range of Data

to
tl

ts.utc(year, month, day)
ts.utc(year, month, day + 1)

# Time of Solar Transit

t = almanac.find transits(location, sun, tO0, tl)
hour solar transit = t.utc.hour
minutes solar transit = t.utc.minute
second_solar transit = t.utc.second

zuhur time = hour solar transit + (minutes solar
transit / 60) + (second solar transit / 3600 ) +
timezone + 0.017778

zuhur time = float (zuhur time)
degrees = int (zuhur time )

decimal part = zuhur time - degrees
minutes total = decimal part * 60
minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)
sun_astro = location.at(ts.utc(year, month, day,

hour solar transit, minutes solar transit, second
solar transit)) .observe (sun)

sun_alt, , = sun astro.apparent().altaz()

# Check if the sun is above the horizon at zuhur time
if sun alt.degrees <= 0:

zuhur = “Zuhur Does Not Occur”
else:
zuhur = f£”Zuhur Occurs at {degrees}° {minutes}’

{seconds}"”

print (zuhur)
Zuhur Occurs at 12° 12’ 36"

The calculated Zuhur prayer time for the specified location is 12:12:36. This
result is derived from the values stored in the variables: degrees = 12, minutes
= 12, and seconds = 36. These values represent the time when the sun has just
passed its daily zenith. It is important to note that this calculation assumes con-
version based on the local time (LTC) using the appropriate time zone offset.


http://www.wgs84.latlon
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However, if we intend to use these values for further astronomical calculations,
such as determining the solar position, we must ensure that the computation
is based on UTC (Universal Coordinated Time). This is crucial because astro-
nomical algorithms, such as those used to determine solar altitude or azimuth,
typically rely on standardized time references like UTC to maintain accuracy
and consistency across different locations and dates.

From the given time, determine the position of the sun.

Local time values
= degrees
= minutes
= seconds

n 3 5 #*

H

Adjust local time to UTC
h utc = h - timezone

# Compute observation time using Skyfield

sun_astro = location.at(ts.utc(year, month, day,
h utc, m, s)).observe(sun)
sun _alt, , = sun astro.apparent().altaz()

print (sun_alt)
26deg 40’ 41.6”

Now we get the position of the sun is 26deg 40’ 41.6” of solar altitude. We can
use this value to visualize the position of the sun. Visualization of the sun can
be used using matplotlib. The code could be a little overwhelming, but the
important thing is the variable.

# 1. Import Library

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

import requests

import io # Import io to handle the image data in
memory

# 2. Set Observer and Sun Positions

observer x, observer y = 5, 0 # Observer’s position on
the horizon

altitude angle = sun alt.degrees[0] # Angle in degrees
(negative for below horizon)

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun


http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
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# 3. Calculate the Sun’s position based on the angle
sun_x = observer x - distance to sun # Place the Sun
to the left of the observer

sun y = observer y + np.tan(np.radians(altitude
angle)) * distance_to_sun # Calculate vertical
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 10], [0, 0], color=“green”, linewidth=2,
label=“Horizon”)

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxd0OZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content

stick figure = Image.open(io.BytesIO(response.
content))

stick x, stick y = 5, 0 # Position of stick figure (on

the horizon)

ax.imshow(stick figure, extent=(stick x - 0.3, stick x

+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot (sun _x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Add sky gradient (blue)

sky gradient = np.linspace(l, 0, 256) .reshape(1l, -1)
sky gradient = np.vstack((sky gradient, sky gradient))
ax.imshow (sky gradient, extent=[0, 10, -1.5, 5],
cmap="'Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)

ground = plt.Rectangle((0, -1.5), 10, 1.5,
color=‘darkgreen’, alpha=0.3)
ax.add patch (ground)


http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
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# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_y], color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)

# Add altitude scale
ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text(-0.5, 0, “Horizon (0°)”, wva=“center”,
ha=“right”, fontsize=10, color=“green”)

ax.text (-0.5, sun_y, f£”Sun Position ({altitude_
angle:.4f}°)", va=“center”, ha=“right”, fontsize=10,

color="orange”)

# Adjust the plot
ax.set x1im(0, 10)
ax.set ylim(-1.5, 5)

# Add labels and legend

ax.axis (“off”)

ax.legend (loc="“upper right”)

ax.set title(f”Sun’s Altitude Visualization at Zuhur
Prayer Time\n Lat: {lat location}® N Long: {long
location}® E TZ: {timezone}\n {day} {month name}
{year} {degrees}: {minutes}: {seconds}”, fontsize=14)

plt.show ()

In the code above, the most important variable is sun_alt.degrees, which repre-
sents the sun’s altitude in degrees at the specified moment. This value is criti-
cal for determining whether the sun meets the required condition for a given
prayer time. The remaining code functions primarily as a template, providing
structure for observation and visualization, and does not directly affect the
outcome of the sun’s altitude calculation. Additionally, when visualizing dif-
ferent prayer times (e.g., Subh, Zuhur, Asar, etc.), ensure that the graph title is
updated accordingly by modifying the line:

ax.set title(f”Sun’s Altitude Visualization at Zuhur
Prayer Time\n Lat: {lat location}®° N Long: {long
location}® E TZ: {timezone}\n {day} {month name} {year}
{degrees}: {minutes}: {seconds}”, fontsize=14)

to reflect the specific prayer time being analyzed. The result of the coding
visualization is shown in Figure 10.2.


http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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Sun's Altitude Visualization at Zuhur Prayer Time
Lat: 39.9° N Long: 116.4° E TZ: 8
19 12 2024 12:12: 36

—— Horizon
sun
--- Line of Sight

FIGURE 10.2 Visualization of sun position during Zuhr prayer time.

VISUALIZATION OF SUN POSITION
DURING ASAR PRAYER TIME

Exercise 3: Visualizing the Sun’s
Altitude at Asar Prayer Time for
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Asar prayer
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone:
UTC+8 ) on December 19, 2024. In exercise 3, the given data only includes
location coordinates and dates. Therefore, we need to calculate the sun’s alti-
tude at the time of Asar as explained in Chapter 7. After that, we can then cre-
ate a visualization of the sun’s altitude at the time of Asar. First, calculate the
time of Asar prayer time

#Calculate Asr Prayer Time and Sun’s Altitude
# 1. Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

import calendar


http://www.skyfield.api
http://www.skyfield.api
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# 2. Define Observer’s Location
lat location = 39.9

long location = 116.4

timezone = 8

# 3. Define Date

day = 19

month = 12

year = 2024

month name = calendar.month name [month]

# 4. Load Astronomical Data
ts = load.timescale()

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

# 6. Initialize Observer Location
location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

# 7. Setup range of calculate date for calculating
solar transit

t0 = ts.utc(year, month, day)

tl = ts.utc(year, month, day + 1)

o)

# Calculate the time of solar transit
t = almanac.find transits(location, sun, tO, tl)

# 9. The position of sun altitude at the time of the
solar transit

h, m, s = t.utc.hour, t.utc.minute, t.utc.second
sun_astro = location.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

# 10. Calculate the length of the sun shadow during
transit

sun_shadow_transit = 1/(math.tan(math.radians (sun_a
1t .degrees)))

# 11. Calculate the length of the sun shadow at Asr
Prayer Time
sun_shadow asar = 1 + sun_shadow_transit


http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.math.tan
http://www.math.radians
http://www.sun_alt.degrees
http://www.sun_alt.degrees
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# 12. Loop the sun shadow does not pass the length of
the asar sun shadow

# Start with hour

# Start with hour

test =1
while True:

# Calculate the shadow length

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)
sun_alt, _, = sun_astro.apparent () .altaz () # Get

the altitude of the sun
sun_shadow= 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break

if test > 24:
break

if sun shadow >= sun shadow asar:
break # Exit the loop if the shadow length
matches or exceeds the desired length

h +=1

# Once the condition is met for hours, move to minutes
h asar = h -1
test=1
while True:
# Calculate the shadow length

sun_astro = location.at(ts.utc(year, month, day,
h asar, m, s)) .observe (sun)
sun_alt, _, = sun_astro.apparent () .altaz () # Get

the altitude of the sun
sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break

if test > 1440:
break

if sun shadow >= sun shadow asar:
break # Exit the loop if the shadow length
matches or exceeds the desired length

m += 1


http://www.location.at
http://www.ts.utc
http://www.math.tan
http://www.location.at
http://www.ts.utc
http://www.math.tan
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# Increment time in minutes
m asar = m - 1
test = 1

# Once the condition is met for minutes, move to
seconds
while True:

# Calculate the shadow length

sun_astro = location.at(ts.utc(year, month, day,
h asar, m _asar, s)).observe(sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get

the altitude of the sun
sun_shadow = 1 / math.tan(math.radians (sun_alt.
degrees))

if sun alt.degrees <= 0:
break

if test > 86400:
break

if sun shadow >= sun shadow asar:
break # Exit the loop if the shadow length
matches or exceeds the desired length

s += 1

# Increment time in seconds
s_asar = s

asar time = (h asar + (m_asar) / 60 + s_asar / 3600) +
timezone

asar time = float (asar_time)

degrees = int (asar time)

decimal part = asar time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees <= 0 or test >86400:
asar = “Asar Does Not Occur”

else:
asar = f”Asar Occurs at {degrees}° {minutes}’
{seconds}"”

print (asar)
Asar Occurs at 14° 34’ 7"


http://www.location.at
http://www.ts.utc
http://www.math.tan
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Second, sun’s altitude visualization,

# 1. Import Library

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

import requests

import io # Import io to handle the image data in
memory

# 2. Set Observer and Sun Positions

observer x, observer y = 5, 0 # Observer’s position on
the horizon

altitude angle = sun alt.degrees[0] # Angle in degrees
(negative for below horizon)

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun

# 3. Calculate the Sun’s position based on the angle
sun X = observer x - distance to sun # Place the Sun
to the left of the observer

sun y = observer y + np.tan(np.radians(altitude
angle)) * distance_to_sun # Calculate vertical
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 10], [0, 0], color=“green”, linewidth=2,
label=“Horizon")

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content

stick figure = Image.open(io.BytesIO(response.
content))

stick x, stick y = 5, 0 # Position of stick figure (on
the horizon)


http://www.matplotlib.pyplot
http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
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ax.imshow (stick figure, extent=(stick x - 0.3, stick x
+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot (sun _x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Add sky gradient (blue)

sky gradient = np.linspace(l, 0, 256) .reshape(1l, -1)
sky gradient = np.vstack((sky gradient, sky gradient))
ax.imshow (sky gradient, extent=[0, 10, -1.5, 5],
cmap="'Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)

ground = plt.Rectangle((0, -1.5), 10, 1.5,
color=‘darkgreen’, alpha=0.3)

ax.add patch (ground)

# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_y], color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)

# Add altitude scale
ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text(-0.5, 0, “Horizon (0°)”, wva=“center”,
ha=“right”, fontsize=10, color=“green”)

ax.text (-0.5, sun_y, f£”Sun Position ({altitude_
angle:.4f}°)", va=“center”, ha=“right”, fontsize=10,

color="orange”)

# Adjust the plot
ax.set x1im(0, 10)
ax.set ylim(-1.5, 5)

# Add labels and legend

ax.axis (“off”)

ax.legend (loc="“upper right”)

ax.set title(f”Sun’s Altitude Visualization at Asr
Prayer Time\n Lat: {lat_location}° N Long: {long
location}® E TZ: {timezone}\n {day} {month name}
{year} {degrees}: {minutes}: {seconds}”, fontsize=14)

plt.show ()


http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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Sun's Altitude Visualization at Asr Prayer Time
Lat: 39.9° N Long: 116.4° ETZ: 8
19 December 2024 14: 34: 7

—— Horizon
Sun
--- Line of Sight

FIGURE 10.3 Visualization of sun position during Asar prayer time.

The result of the code implementation above is shown in Figure 10.3.

VISUALIZATION OF SUN POSITION
DURING MAGHRIB PRAYER TIME

Exercise 4: Visualizing the Sun’s
Altitude at Maghrib Prayer Time for
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Maghrib prayer
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone:
UTC+8 ) on December 19, 2024, with elevation of 100 m. First, determine the
maghrib prayer time.

#Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

#Load Ephemeris Data and Planet Objects
ts = load.timescale()


http://www.skyfield.api
http://www.skyfield.api

10 e Sun Position during Prayer Times Visualization 149

eph = load(‘'de440s.bsp’)
planets = load(‘'de440s.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

# Variable Input

lat location = 39.9
long location = 116.4
timezone = 8

day = 19

month = 12

year = 2024

ele = 100

#input into
location = earth + wgs84.latlon(lat location, long
location, elevation m=0)

#Range of Data

t0 = ts.utc(year, month, day)
tl = ts.utc(year, month, day + 1)

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure_mbar=1030.0)

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second

maghrib time = float(h + m / 60 + s / 3600 + timezone)
maghrib_time %= 24 # Ensure 24-hour clock format
maghrib time = float (maghrib time)

degrees = int (maghrib time)

decimal part = maghrib time - degrees


http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
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minutes total = decimal part * 60
minutes = int (minutes total)
seconds = round((minutes total - minutes) * 60)
sun_astro = location.at (ts.utc(year, month, day, h, m,
s)) .observe (sun)
sun_alt, , = sun astro.apparent().altaz()
if sun alt.degrees >= 0:
maghrib = “Maghrib Does Not Occur”
else:
maghrib = f”Maghrib Occurs at {degrees}° {minutes}’

{seconds}"”

print (maghrib)
Maghrib Occurs at 16° 53’ 43"

First, determine sun altitude.

Local time values
= degrees
= minutes
= seconds

n 3 5 #*

H

Adjust local time to UTC
h utc = h - timezone

# Compute observation time using Skyfield

sun_astro = location.at(ts.utc(year, month, day,
h utc, m, s)).observe(sun)
sun_alt, , = sun astro.apparent().altaz()

print (sun_alt)
-0ldeg 09’ 42.5"

Then visualize the position of the sun

# 1. Import Library

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

import requests

import io # Import io to handle the image data in
memory


http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
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# 2. Set Observer and Sun Positions

observer x, observer y = 5, 0 # Observer’s position on
the horizon

altitude angle = sun_alt.degrees # Angle in degrees
(negative for below horizon)

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer x - distance to sun # Place the Sun
to the left of the observer

sun_y = observer y + np.tan(np.radians(altitude
angle)) * distance_to_sun # Calculate vertical
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 10], [0, 0], color=“green”, linewidth=2,
label=“Horizon")

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content

stick figure = Image.open(io.BytesIO(response.
content))

stick x, stick y = 5, 0 # Position of stick figure (on
the horizon)

ax.imshow(stick figure, extent=(stick x - 0.3, stick x
+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot (sun _x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky gradient = np.linspace(l, 0, 256) .reshape(1l, -1)


http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
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sky gradient = np.vstack((sky gradient, sky gradient))
ax.imshow (sky gradient, extent=[0, 10, -1.5, 5],
cmap="'Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)

ground = plt.Rectangle((0, -1.5), 10, 1.5,
color=‘darkgreen’, alpha=0.3)
ax.add patch (ground)

# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_y], color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)

# Add altitude scale
ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text(-0.5, 0, “Horizon (0°)”, wva=“center”,
ha=“right”, fontsize=10, color=“green”)

ax.text (-0.5, sun_y-1, f£”Sun Position ({altitude_
angle:.4f}°)", va=“center”, ha=“right”, fontsize=10,

color="orange”)

# Adjust the plot
ax.set x1im(0, 10)
ax.set ylim(-1.5, 5)

# Add labels and legend

Sun's Altitude Visualization at Maghrib Prayer Time
Lat: 39.9° N Long: 116.4° E TZ: 8
19 12 2024 16: 53: 43

—— Horizon
sun
-- Line of Sight

Horizon (0

FIGURE 10.4 Visualization of sun position during Maghrib prayer time.


http://www.np.vstack
http://www.ax.imshow
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ax.axis (“off”)

ax.legend (loc=“upper right”)

ax.set title(f”Sun’s Altitude Visualization at Maghrib
Prayer Time\n Lat: {lat_location}° N Long: {long
location}® E TZ: {timezone}\n {day} {month} {year}
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt.show ()

The result of the code implementation above is shown in Figure 10.4.

VISUALIZATION OF SUN POSITION
DURING ISYA' PRAYER TIME

Exercise 5: Visualizing the Sun’s
Altitude at Isya’ Prayer Time for
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Isya’ prayer
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone:
UTC+8 ) on December 19, 2024, for solar depression degree of 16. First, deter-
mine the Isya’ prayer time

#Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

#Load Ephemeris Data and Planet Objects
ts = load.timescale()

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

earth = planets[‘earth’]

sun = planets[‘sun’]

# Variable Input

lat location = 39.9
long location = 116.4


http://www.ax.axis
http://www.ax.legend
http://www.plt.show
http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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timezone = 8
day = 19
month = 12
year = 2024
ele = 100

location = earth + wgs84.latlon(lat location, long
location, elevation m=ele)

t0 = ts.utc(year, month, day)

tl = ts.utc(year, month, day + 1)

from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure_mbar=1030.0)

t, y = almanac.find settings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second
#print (h,m, s)

1
1
h

=2 ? 3

+1

sun_astro = location.at (ts.utc(year, month, day, h,
m) ) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun az, distance = sun app.altaz()

#print (sun_alt)

# Start with hour

isya angle = 16

elevation correction = 0.0293 * math.sqgrt (ele)

isha angle actual = -isya angle -elevation correction
#print (isya angle corrected)


http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.math.sqrt

10 e Sun Position during Prayer Times Visualization 155

# Start with hour

test = 1
while True:

# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,
h+1l, m, s)).observe(sun)
sun_alt, _, = sun_astro.apparent () .altaz () # Get

the altitade_of the sun

if sun _alt.degrees >= 0:
break

if test > 24:
break

if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

h =h+ 1

# Once the condition is met for hours, move to minutes
h isya =h - 1
test = 1
while True:
# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,
h isya, m, s)) .observe (sun)
sun_alt, _, = sun_astro.apparent () .altaz () # Get

the altitade_of the sun

if sun _alt.degrees >= 0:
break

if test > 1440:
break

if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

m += 1

# Increment time in minutes
m isya =m - 1


http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
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# Once the condition is met for minutes, move to
seconds
test = 1
while True:
# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,
h isya, m isya, s)).observe (sun)
sun_alt, , _ = sun astro.apparent().altaz() # Get

the altitude of the sun

if sun _alt.degrees >= 0:
break

if test > 86400:
break

if sun alt.degrees <= isha angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

s += 1

# Increment time in seconds
s isya = s

isya time = float(h isyak + m_isyak / 60 + s_isyak /
3600 + timezone)

isya_time %= 24 # Ensure 24-hour clock format

isya time = float (isya time)

degrees = int (isya time)

decimal part = isya time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees >= 0 or test >86400:
isya = “Isya’ Does Not Occur”

else:
isya = f”Isya’ Occurs at {degrees}®° {minutes}’
{seconds}"”

print (isya)
Isya’ Occurs at 18° 19" 59"


http://www.location.at
http://www.ts.utc
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Determine the sun altitude during Isya’ Prayer Time

n 3 5 #*

H

h_

Local time values
= degrees
= minutes
= seconds

Adjust local time to UTC
utc = h - timezone

# Compute observation time using Skyfield

sun_astro = location.at(ts.utc(year, month, day,
h utc, m, s)).observe(sun)
sun _alt, , = sun astro.apparent().altaz()

print (sun_alt)
-l6deg 17’ 40.3"

Visualize the position of the sun during Isya’ Prayer Time

#

1. Import Library

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in
memory

#

(negative for below horizon)

2. Set Observer and Sun Positions
observer x, observer y = 5,
the horizon

altitude angle = sun alt.degrees # Angle in degrees

0 # Observer’s position on

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun

#

angle))

3. Calculate the Sun’s position based on the angle
sun X = observer x - distance to sun # Place the Sun
to the left of the observer
sun y = observer y + np.tan(np.radians(altitude

position

* distance_to_sun # Calculate vertical


http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
http://www.np.tan
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# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 10], [0, 0], color=“green”, linewidth=2,
label=“Horizon")

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content

stick figure = Image.open(io.BytesIO(response.
content))

stick x, stick y = 5, 0 # Position of stick figure (on
the horizon)

ax.imshow(stick figure, extent=(stick x - 0.3, stick x
+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot (sun _x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Add sky gradient (blue)

sky gradient = np.linspace(l, 0, 256) .reshape(1l, -1)
sky gradient = np.vstack((sky gradient, sky gradient))
ax.imshow (sky gradient, extent=[0, 10, -1.5, 5],
cmap="'Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)

ground = plt.Rectangle((0, -1.5), 10, 1.5,
color=‘darkgreen’, alpha=0.3)
ax.add patch (ground)

# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_y], color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)


http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
http://www.ax.plot
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Sun's Altitude Visualization at Isya' Prayer Time
Lat: 39.9° N Long: 116.4° E TZ: 8
19 12 2024 6: 3: 38

—— Horizon
Sun
--=-Line of Sight

Horizon (0

FIGURE 10.5 Visualization of sun position during Isya’ prayer time.

# Add altitude scale

ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text (-0.5, 0, “Horizon (0°)”, va=“center”,
ha=“right”, fontsize=10, color=“green”)

ax.text (-0.5, sun_y-1, f£”Sun Position ({altitude
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10,
color="orange”)

# Adjust the plot

ax.set x1lim(0, 10)

ax.set _ylim(-1.5, 5)

# Add labels and legend

ax.axis (“off”)

ax.legend(loc=“upper right”)

ax.set _title(f”Sun’s Altitude Visualization at Isya’
Prayer Time\n Lat: {lat location}° N Long: {long
location}® E TZ: {timezone}\n {day} {month} {year}
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt.show()

The result of the code implementation above is shown in Figure 10.5.


http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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VISUALIZATION OF SUN POSITION
DURING SUBH PRAYER TIME

Exercise 6: Visualizing the Sun’s
Altitude at Subh Prayer Time for
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Subh prayer
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone:
UTC+8 ) on December 19, 2024, for solar depression degree of 15. First, deter-
mine the Subh prayer time

#Import Necessary Function

from skyfield.api import load

from skyfield.api import N, S, E, W, wgs84
from skyfield import almanac

import math

#Load Ephemeris Data and Planet Objects
ts = load.timescale()

eph = load(‘'de440s.bsp’)

planets = load(‘'de440s.bsp’)

earth = planets[‘earth’]

sun = planets[‘sun’]

# Variable Input

lat_location = 39.9
long_location = 116.4
timezone = 8

day = 19

month = 12

year = 2024

ele = 100

location = earth + wgs84.latlon(lat_location, long_
location, elevation m=ele)

t0 = ts.utc(year, month, day)

tl = ts.utc(year, month, day + 1)


http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
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from skyfield.units import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude m = ele

earth radius m = 6378136.6

side over hypotenuse = earth radius m / (earth
radius m + altitude m)

h = Angle(radians=-arccos (side over hypotenuse))
solar_radius_degrees = 16 / 60

r = refraction(0.0, temperature C=15.0,
pressure_mbar=1030.0)

t, y = almanac.find risings(location, sun, tO0, t1,
horizon degrees=-r + h.degrees - solar radius degrees)
h, m, s = t.utc.hour, t.utc.minute, t.utc.second

subh angle = 16
elevation correction = 0.0293 * math.sqgrt (ele)
subh angle actual = -subh angle - elevation correction

# Start with hour

test = 1
while True:

# Calculate the Solar Altitude

sun_astro = location.at (ts.utc(year, month, day, h,
m, s)).observe (sun)

sun_alt, , _ = sun astro.apparent().altaz() # Get
the altitude of the sun

if sun alt.degrees >= 0:
break

if test > 24:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

# Once the condition is met for hours, move to minutes
h subh = h + 1
test =1


http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.math.sqrt
http://www.location.at
http://www.ts.utc
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while True:
# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,
h subh, m, s)).observe(sun)
sun_alt, _, _ = sun astro.apparent().altaz() # Get

the altitude of the sun
if sun alt.degrees >= 0:
break
if test > 1440:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree

m -= 1

# Increment time in minutes
m subh = m + 1

# Once the condition is met for minutes, move to
seconds
test =1
while True:
# Calculate the Solar Altitude

sun_astro = location.at(ts.utc(year, month, day,
h subh, m subh, s)).observe(sun)
sun_alt, _, _ = sun astro.apparent().altaz() # Get

the altitude of the sun
if sun alt.degrees >= 0:
break
if test > 86400:
break

if sun alt.degrees <= subh angle actual:
break # Exit the loop if the solar altitude
located below -18 degree
s -=1
# Increment time in seconds

s_subh = s +1

subh time = float (h subh + (m_subh) / 60 + s_subh /
3600 + timezone)


http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
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subh _time %= 24 # Ensure 24-hour clock format
subh time = float (subh time)

degrees = int (subh time)

decimal part = subh time - degrees

minutes total = decimal part * 60

minutes = int (minutes total)

seconds = round((minutes total - minutes) * 60)

if sun alt.degrees >= 0 or test >86400:
subh = “Subuh Does Not Occur”

else:
subh = f£”Subuh Occurs at {degrees}®° {minutes}’
{seconds}"”

print (subh)
Determine the sun altitude of Subh

Local time values
= degrees
= minutes
= seconds

n 3 5 #*

H

Adjust local time to UTC
h utc = h - timezone

# Compute observation time using Skyfield

sun_astro = location.at(ts.utc(year, month, day,
h utc, m, s)).observe(sun)
sun_alt, , = sun astro.apparent().altaz()

print (sun_alt)
-l6deg 11’ 25.1"

Determine and visualize the position of the sun during Subh prayer time.

# 1. Import Library

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

import requests

import io # Import io to handle the image data in
memory


http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot

164  Python for Islamic Astronomy

# 2. Set Observer and Sun Positions

observer x, observer y = 5, 0 # Observer’s position on
the horizon

altitude angle = sun_alt.degrees # Angle in degrees
(negative for below horizon)

distance_to_sun = 3 # Arbitrary horizontal distance to
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer x - distance to sun # Place the Sun
to the left of the observer

sun_y = observer y + np.tan(np.radians(altitude
angle)) * distance_to_sun # Calculate vertical
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.plot ([0, 10], [0, 0], color=“green”, linewidth=2,
label=“Horizon")

# Add stick figure to the plot using direct download
link from Google Drive URL

image url = “https://drive.google.com/uc?export
=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSAX"

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content

stick figure = Image.open(io.BytesIO(response.
content))

stick x, stick y = 5, 0 # Position of stick figure (on
the horizon)

ax.imshow (stick figure, extent=(stick x - 0.3, stick x
+ 0.3, stick y, stick y + 1))

# Add the Sun as an orange dot
ax.plot (sun _x, sun_y, marker=“o”, color=“orange”,
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky gradient = np.linspace(l, 0, 256) .reshape(1l, -1)
sky gradient = np.vstack((sky gradient, sky gradient))


http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
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Sun's Altitude Visualization at Subh Prayer Time
Lat: 39.9° N Long: 116.4° E TZ: 8
19 12 2024 6: 3: 38

—— Horizon
sun
--=--Line of Sight

Horizon (0

FIGURE 10.6 Visualization of sun position during Subh prayer time.

ax.imshow (sky gradient, extent=[0, 10, -1.5, 5],
cmap="‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)

ground = plt.Rectangle((0, -1.5), 10, 1.5,
color=‘darkgreen’, alpha=0.3)

ax.add_patch (ground)

# Draw the line of sight (dashed line)

ax.plot ([observer x, sun x], [observer y + 0.8,
sun_y], color=“black”, linestyle=“--”, linewidth=1,
label="Line of Sight”)

# Add altitude scale

ax.axhline (0, color=“black”, linestyle=“-",
linewidth=1)

ax.text (-0.5, 0, “Horizon (0°)”, va=“center”,
ha=“right”, fontsize=10, color=“green”)

ax.text (-0.5, sun_y-1, f£”Sun Position ({altitude
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10,
color="orange”)

# Adjust the plot
ax.set x1lim(0, 10)
ax.set _ylim(-1.5, 5)

# Add labels and legend


http://www.ax.imshow
http://www.ax.plot
http://www.ax.text
http://www.ax.text
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ax.axis (“off”)

ax.legend (loc=“upper right”)

ax.set title(f”Sun’s Altitude Visualization at Subh
Prayer Time\n Lat: {lat_location}° N Long: {long
location}® E TZ: {timezone}\n {day} {month} {year}
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt.show ()

The result of the code implementation above is shown in Figure 10.6.

Exercise 1: Subh

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Subuh (Fajr) prayer
time for the date 27 December 2025 using a solar depression angle of —18
degrees, and visualize the sun’s altitude when it reaches this angle before
sunrise.

Exercise 2: Syuruk

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Syuruk (sunrise)
time for the date 27 December 2025 and visualize the sun’s altitude curve
around sunrise.

Exercise 3: Zuhur

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Zuhur (prayer time)
for the date 27 December 2025, and visualize the sun’s altitude at its highest
point on that day.

Exercise 4: Asar

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Asar prayer time
for the date 27 December 2025 using both the standard shadow ratio (1x) and
the Hanafi method (2x), and visualize the sun’s altitude now of each Asar time.


http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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Exercise 5: Maghrib

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Maghrib prayer time
for the date 27 December 2025 based on the time of sunset and visualize the
sun’s altitude as it crosses the horizon.

Exercise 6: Isya’

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East,
elevation 100 m, and a time zone of GMT+9, calculate the Isya’ (Isha) prayer
time for the date 27 December 2025 using a solar depression angle of —18
degrees, and visualize the sun’s altitude as it reaches that angle after sunset.



Lunar Crescent 11
Observation
Data Visualization

Matplotlib is a plotting library for the Python programming language and
its numerical mathematics extension, NumPy. It provides an object-oriented
API for embedding plots into applications using general-purpose GUI toolkits
like Tkinter, wxPython, Qt, or GTK. There is also a procedural “pylab” inter-
face based on a state machine (like OpenGL), designed to closely resemble
MATLAB, though its use is discouraged. SciPy uses Matplotlib. Matplotlib
was originally written by John D. Hunter. Since then, it has developed an active
community and is distributed under a BSD-style license. Michael Droettboom
was appointed as the lead developer of Matplotlib shortly before John Hunter’s
passing in August 2012 and was later joined by Thomas Caswell. Matplotlib
can be used to create maps, plot various types of graphs, and is highly flexible
for customization. Therefore, in this class, we will learn how to use Matplotlib
for generating visualizations of crescent moon (hilal) data.

FIRST PRACTICE: PENANG MALAYSIA

A. Horizon Generation
The horizon generation must cover 360 degrees in azimuth and 180
degrees in altitude. This ensures that the generated horizon can visualize
the visibility data of the crescent moon (hilal) across various locations and
dates. The determination for horizon generation is as follows:
import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(figsize=(20,10))
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http://www.matplotlib.pyplot
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The

-0.04

horizon angles = np.linspace(0, 360, 720)

horizon altitudes = np.zeros like(horizon angles)
ax.plot (horizon angles, horizon altitudes,
color=‘black’, linestyle='-’, linewidth=1)

result of the above programming is shown in Figure 11.1.
The generated line represents the observer’s horizon line.

Solar Position Visualization and Graph Labelling

To display the sun’s position (represented in yellow), the following pro-

gramming steps are implemented:

# Sun Position Determination
sun_az = 287

sun_alt -1

moon_az 283

moon_alt = 12.00474

daz = abs(sun_az-moon az)

arcl = 13.03075

Location = “Penang, Malaysia”

day = 12

month = 1

year = 2024

month name = calendar.month name [month]

The graph is annotated using these key methods:
ax.set xlabel (‘Azimuth (degrees)’)
ax.set _ylabel (‘*Altitude (degrees)’)

ax.set_title(‘' The Position of the Moon and Sun During

Observation ‘)

FIGURE 11.1 Observer horizon line.


http://www.ax.plot
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With this, the altitude and azimuth have been labelled for easier interpretation.
Typically, we observe the sun and the central reference line aligned at the mid-
point. To ensure the black horizon line and the sun are centered, the following
adjustments are made (Figure 11.2):

xlim max = max(sun az - (daz * 2), sun _az + (daz * 2))
xlim min = min(sun az - (daz * 2), sun az + (daz * 2))

ax.set xlim((xlim min, xlim max))
ax.set ylim((sun_alt - 2), (moon alt + 5))

C. Next is to display the moon’s position. The moon’s shape uses a cres-
cent moon image. Please download the crescent moon position file
from Google image search with a transparent background. Upload the
crescent moon image to Google Drive with public access. The pro-
gramming to determine the crescent moon’s position is as follows:

from PIL import Image
import requests
import io # Import io to handle the image data in

memory
from matplotlib.offsetbox import OffsetImage,
AnnotationBbox

# Add the crescent moon image as a marker
opposite = moon alt - sun_alt

adjacent = (moon az - sun_az)

New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia

Attitude (degrees)

00

280 282 284 286 288 2% 292 294
Azimuth (degrees)

FIGURE 11.2 Observer horizon line with sun.
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# Calculate the angle using the tangent function (TOA)
angle rad = math.atan2 (opposite, adjacent)

# Convert the angle to degrees
angle degrees = (math.degrees(angle rad))

# Load the crescent moon image

# Modified the Google Drive URL to get the direct
download link

image url = “https://drive.google.com/uc?export
=download&id=1ZFbJ5pWYVv3ZE4SY50Rme7w8iejzKRik4"”

# Download the image content from the URL

response = requests.get (image url)
response.raise_for status() # Raise an exception for
bad status codes

# Open the image from the downloaded content
crescent _img = Image.open(io.BytesIO(response.
content))

# Rotate the crescent moon image based on the
calculated angle
rotated img = crescent img.rotate(angle degrees)

# Add the crescent moon image as a marker

imagebox = OffsetImage (rotated img, zoom=0.03) #
Adjust zoom as needed

# Using the correct moon position variables moon az
and moon_alt

ab = AnnotationBbox (imagebox, (moon az, moon alt),
frameon=False)

ax.add artist (ab)

plt.show() # Added this line to display the plot

Thus, the crescent moon’s position relative to the sun can be clearly illus-
trated (Figure 11.3).

Sky Background Generation
The next step involves creating the celestial background. The implementa-
tion requires these steps:

from matplotlib.colors import LinearSegmentedColormap
# Import LinearSegmentedColormap


https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
http://www.requests.get
http://www.Image.open
http://www.crescent_img.rotate
http://www.plt.show
http://www.matplotlib.colors
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Altitude (degrees)

00

New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia

86 288
Azimuth (degrees)

FIGURE 11.3 Observer horizon line with sun and moon.

# Sky Background Generation

sky = LinearSegmentedColormap.from list (‘sky’,
[‘blue’,'white’, ‘yellow’, ‘orange’])

extent = ax.get xlim() + ax.get ylim() # Adjusted to
use current xlim and ylim

ax.imshow([[0, 0], [1, 1]], cmap=sky,
interpolation=‘bicubic’, extent=extent)

Next is to display the MABIMS criteria on the visualization. First,
we’ll visualize the elongation criterion. On this plot, elongation is rep-
resented as a radial distance from the sun’s center. The implementation
code is as follows (Figure 11.4):

from matplotlib.patches import Arc # Import the Arc
class

# Visualization of Elongation Criteria

sun_az degrees = sun_az

sun_alt degrees = sun alt

moon_az_degrees = moon_az

moon_alt degrees = moon alt

kriteria elongasi = 6.4
circle radius = kriteria elongasi

# Sun center coordinates
sun_center X = sun_az
sun_center y = sun_alt


http://www.ax.imshow
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New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia
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FIGURE 11.4 Visualization of observer horizon with sun and moon position.

# Semicircle parameters
radius = kriteria elongasi
x1 = sun_az-kriteria elongasi
X2 = sun_az+kriteria elongasi

# Calculate the starting and ending angles of the

semicircle

arccos_value start angle = np.arccos(((xl - sun_
center_x) / radius))

arccos_value end angle = np.arccos(((x2 - sun_

center_x) / radius))


http://www.np.arccos
http://www.np.arccos
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if np.isnan(np.arccos((arccos_value start angle))):
start_angle = 0.000001

else:
start_angle = 180
- np.degrees (arccos_value start angle)

if np.isnan(np.arccos((arccos value end angle))):
end angle = 180+0.000001

else:
end angle = 180
- np.degrees (arccos_value end angle)

print (start_angle,end angle)
# Create the semicircle patch
semicircle patch = Arc((sun_center x, sun center y), 2
* radius, 2 * radius, thetal=start angle,
theta2=end angle,
fill=False, color=‘blue’, linestyle=‘--')
# Add the semicircle patch to the plot
ax.add patch(semicircle patch)

F. Next is the visualization of the Altitude Criterion. Altitude Criteria are
calculated relative to the horizon (0° altitude). The implementation will
display as shown in Figures 11.5-11.8:

# Visualization of Altitude Criteria

kriteria altitude = 3
horizontal line y = kriteria altitude
x1l =0

X2 = sun_az-kriteria elongasi

ax.hlines (y=horizontal line y,xmin=x1,
xmax=x2,color=‘red’, linestyle=‘--')

x11 = sun_az+kriteria elongasi

x22 = 360

ax.hlines (y=horizontal line y,xmin=x11,
xmax=x22,color=‘red’, linestyle=‘--')

G. Add Logo

# Load the Logo

# Modified the Google Drive URL to get the direct
download link

logo url = “https://drive.google.com/uc?export
=download&id=1 HEgO0C3bv33i54Hl1brJKD4Zmdxap8Q8a”


http://www.np.isnan
http://www.np.arccos
http://www.np.isnan
http://www.np.arccos
http://www.ax.hlines
http://www.ax.hlines
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
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New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia

15.0

125

10.0 1

7.5

Altitude (degrees)

5.0 1

\\
2.5 1 4

0.0

-2.54

280 282 286 288 290 292 294
Azimuth (degrees)

T
284

FIGURE 11.5 Visualization of observer horizon with sun and moon position with

elongation criterion.

# Download the image content from the URL
response = requests.get (logo url)
response.raise for status()
bad status codes

# Open the image from the downloaded content
logo_img = Image.open(io.BytesIO(response.content))

# Raise an exception for

# Add the logo to the plot (bottom right corner)

logo box = OffsetImage(logo img, zoom=0.1) # Adjust
zoom as needed


http://www.requests.get
http://www.Image.open
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New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia
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FIGURE 11.6 Visualization of observer horizon with sun and moon position with
elongation and altitude criterion.

logo_ab = AnnotationBbox(logo box, (xlim max - 2.5,

sun_alt - 1), frameon=False) # Position adjusted based
on plot limits

ax.add artist (logo_ab)

H. Plot the Moon’s Altitude Line and Elongation

# Altitude Line

ax.vlines (x=moon az, ymin=0, ymax=moon alt,
color='blue’, linestyle=‘'--')


http://www.ax.vlines
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New Moon Observation Data for 12 January 2024

Observation Location: Penang, Malaysia
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FIGURE 11.7 Visualization of observer horizon with sun and moon position with

elongation and altitude criterion, added with logo.

ax.text (moon_az+0.3, moon_alt/2, f’Moon Altitude
{moon_alt:.2f}’, color=‘blue’, fontsize=10, ha=‘left’)

# Elongation Line

ax.plot ([moon_az, sun _az], [moon alt, sun_alt],

color=‘green’, linestyle=‘'‘--')

ax.text (sun_az-2, arcl/2-1, f’'Elongation: {arcl:.2f}’,

color =‘green’, fontsize=10, ha=‘left’)

plt.show() # Added this line to display the plot


http://www.ax.text
http://www.ax.plot
http://www.ax.text
http://www.plt.show

178 Python for Islamic Astronomy

New Moon Observation Data for 12 January 2024
Observation Location: Penang, Malaysia
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FIGURE 11.8 Visualization of observer horizon with sun and moon position with
elongation and altitude criterion, added with logo and dash line.

SECOND PRACTICE: BANDA
ACEH INDONESIA

Exercise 1

Visualize new moon observation data for May 27, 2025, on Observation
Location: Banda Aceh, Indonesia, Lat: 5.548290 N, 95.323753 East, UTC+7.



11 e Lunar Crescent Observation Data Visualization 179

# Install required libraries

!lpip install skyfield # Astronomical calculations
lpip install numpy # Numerical operations

!lpip install scipy # Scientific computing

'pip install matplotlib # Plotting library

!lpip install tabulate # Pretty-print tables

# Import necessary modules

from skyfield import almanac

from skyfield.api import Topos, load

from skyfield import api

import numpy as np

from skyfield.api import N, S, E, W, load, wgs84
from skyfield.api import Topos, load,

Angle, GREGORIAN START

import math

from scipy.ndimage import rotate

import calendar

from tabulate import tabulate

from matplotlib.patches import Arc

import matplotlib.pyplot as plt

from matplotlib.colors import LinearSegmentedColormap
import matplotlib.image as mpimg

from matplotlib.offsetbox import OffsetImage,
AnnotationBbox

from PIL import Image

import requests

import io # Import io to handle the image data in
memory

# Load planetary ephemeris data
planets = load(‘de42l.bsp’)
earth = planets[‘earth’]

sun = planets[‘sun’]

moon = planets[‘moon’]

h maghrib = 0 # Maghrib hour
m_maghrib = 0 # Maghrib minute

# Initialize time scale and ephemeris
ts = load.timescale()
eph = api.load(‘'de421.bsp’)

# Set observation location and time parameters
Lokasi = “Banda Aceh, Indonesia”
lat_titikl = 5.548290 # Latitude of observation point


http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.matplotlib.pyplot
http://www.matplotlib.colors
http://www.matplotlib.image
http://www.de421.bsp
http://www.api.load
http://www.de421.bsp
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lon_titikl = 95.323753 # Longitude of observation
point

tz = 7 # Timezone offset (UTC+7)

year = 2025 # Year of observation

month = 5 # Month of observation

day = 27 # Day of observation

# Create observer location object

location titikl = wgs84.latlon(lat titikl * N, lon
titikl * E)

observer titikl = eph[‘Earth’] + location titikl
print (observer titikl)

def settime(year, month, day, observer titik, x):
“w2Calculate setting time of celestial body with
timezone adjustment”““

# Set time range for search (current day to next day)
t0 = ts.utc(year,month,day)
tl = ts.utc(year, month,day+1)

# Find setting time of celestial body x
t,y = almanac.find settings(observer titik, x, t0, t1)

# Extract UTC time components

h set transit notz,m set transit notz,s_set transi
t notz = (int(t.utc.hour)), (int(t.utc.minute)), (i
nt (t.utc.second))

# Convert to decimal hours and add timezone offset
time set = (h_set transit notz + ((m_set transit
notz) / 60 + s_set_ transit notz / 3600))+tz

# Convert back to hours, minutes, seconds
h set, d = divmod(time set, 1)
h set = int(h set)
m set, s = divmod(d * 60, 1)
m_set = int(m_set+1+4/60) # Add small adjustment
s _set = int(s * 60)
# Handle overflow in seconds
if s set >= 60:
m _set += s_set // 60

)

s_set = s set % 60

# Handle overflow in minutes
if m set >= 60:


http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
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h set += m_set // 60

)

m _set = m set % 60
# Ensure hours wrap around a 24-hour clock
h set = h set % 24
waktu terbenam = £”{h set}:{m set:02}:{s_set:02}”

return waktu terbenam

# Calculate sunset time

Objek = ‘Matahari’
sun_set = settime(year, month, day, observer titikl,
sun)

# Calculate moonset time

Objek = ‘Bulan’
moon_set = settime(year, month, day, observer titikl,
moon)

# Set Julian calendar cutoff for historical dates
ts.julian calendar cutoff = GREGORIAN START
location = Topos(latitude degrees=lat titikl,
longitude degrees=lon titikl, elevation m=1)

def settime(year, month, day, observer titik, x):
“WwAlternative version that returns hours and
minutes separately”““

# Similar to previous function but returns numeric
values

t0 = ts.utc(year,month,day)

tl = ts.utc(year, month,day+1)

t,y = almanac.find settings (observer titik, x, tO,
tl1)

h set transit notz,m set transit notz,s set transi

t notz = (int(t.utc.hour)), (int(t.utc.minute)), (i
nt (t.utc.second))
time set = (h_set transit notz + ((m_set transit

notz) / 60 + s_set transit notz / 3600))

h set, d = divmod(time set, 1)
h set = int(h set)

m set, s = divmod(d * 60, 1)
m_set int (m_set+1+4/60)
s_set int (s * 60)


http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
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if s_set >= 60:
m_set += s_set // 60
s_set = s_set % 60

if m_set >= 60:
h set += m_set // 60

°

m_set = m_set % 60

h set = h _set % 24
waktu terbenam = £”{h set}:{m set:02}:{s set:02}"

return h_set,m_set
# Get sunset time in numeric format
hsunset,msunset = settime(year, month, day, observer
titikl, sun)
# Create observation location object
boston = earth + Topos(latitude degrees=lat_titikl,

longitude degrees=lon_titikl, elevation m=0)

# Calculate sun position at sunset

sun_astro = boston.at (ts.utc((year), (month), (day),
(hsunset), (msunset))) .observe (sun)

sun_app = sun_astro.apparent ()

sun_alt, sun_az, sun_distance = sun_app.altaz()

# Calculate moon position at sunset

moon_astro = boston.at (ts.utc((year), (month), (day),
(hsunset), (msunset))) .observe (moon)

moon_app = moon_astro.apparent ()

moon_alt, moon_az, moon distance = moon_app.altaz()

# Calculate differences between moon and sun positions

beza_altitud bulan matahari = abs(moon_alt.degrees-
sun_alt.degrees)
daz = abs(moon az.degrees-sun az.degrees)

str date = £’ {day}/{month}/{year}’

# Store observation data
altitud bulan = moon_alt.degrees
elongasi = sun app.separation from(moon app) .degrees

# Prepare data for table display
data = [[“Date”, str date]l,


http://www.boston.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.boston.at
http://www.ts.utc
http://www.moon_app.altaz
http://www.sun_app.separation_from
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[“Location”, Lokasil],

[“Sunset Time”, sun_set],
[“Moonset Time”, moon_ set],
["“Moon Altitude”, altitud bulan],
[“Elongation”, elongasil,

col names = [“Moon-Sun Data”, “Value”]

# Create formatted table
data table = (tabulate(data, headers=col names))

# Create visualization figure
fig, ax = plt.subplots(figsize=(20,10))

# Draw horizon line

horizon angles = np.linspace(0, 360, 720)

horizon altitudes = np.zeros like(horizon angles)
ax.plot (horizon angles, horizon altitudes,
color=‘black’, linestyle='-’, linewidth=1)

# Get sun and moon positions in degrees
sun_az = sun_az.degrees

sun_alt = sun_alt.degrees

moon_az = moon_az.degrees

moon_alt = moon_alt.degrees

arcl = elongasi
Location = Lokasi
month name = calendar.month name [month]

# Plot sun position

ax.scatter(sun_az, sun_alt, color=‘orange’,
label="Sun’, zorder=10, s=900)

ax.set xlabel (‘Azimuth (degrees)’)

ax.set ylabel (*‘Altitude (degrees)’)
ax.set_title(f’New Moon Observation Data for {day}
{month name} {year}\nObservation Location:
{Location}’)

# Set plot limits based on sun-moon positions

xlim max = max(sun az - (daz * 2), sun _az + (daz * 2))
xlim min = min(sun az - (daz * 2), sun _az + (daz * 2))
ax.set xlim((xlim min, xlim max))

ax.set _ylim((sun_alt - 2), (moon alt + 5))


http://www.ax.plot
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# Calculate angle for moon crescent orientation

opposite = moon _alt - sun_alt
adjacent = (moon az - sun_az)
angle rad = math.atan2 (opposite, adjacent)
angle degrees = (math.degrees(angle rad))

# Load and rotate crescent moon image

image url = “https://drive.google.com/uc?export
=download&id=1ZFbJ5pWYVv3ZE4SY50Rme7w8iejzKRik4"”
response = requests.get (image url)

response.raise for status()

crescent _img = Image.open(io.BytesIO(response.
content))

rotated img = crescent img.rotate(angle degrees)

# Add rotated moon image to plot

imagebox = OffsetImage (rotated img, zoom=0.03)

ab = AnnotationBbox (imagebox, (moon az, moon alt),
frameon=False)

ax.add artist (ab)

# Create sky background gradient

sky = LinearSegmentedColormap.from list (‘sky’,
[‘blue’, 'white’, ‘yellow’, ‘orange’])

extent = ax.get xlim() + ax.get ylim()
ax.imshow([[0, 0], [1, 111, cmap=sky,
interpolation=‘bicubic’, extent=extent)

# Visualization of elongation criteria (6.4°
semicircle)

kriteria elongasi = 6.4

circle radius = kriteria elongasi
sun_center_x = sun_az

sun_center y = sun_alt

radius = kriteria elongasi

x1 = sun_az-kriteria elongasi

X2 = sun_az+kriteria elongasi

# Calculate angles for semicircle

arccos_value start angle = np.arccos(((xl - sun_
center x) / radius))
arccos_value end angle = np.arccos(((x2 - sun_

center x) / radius))

if np.isnan(np.arccos((arccos_value start angle))):
start_angle = 0.000001


https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
http://www.requests.get
http://www.Image.open
http://www.crescent_img.rotate
http://www.ax.imshow
http://www.np.arccos
http://www.np.arccos
http://www.np.isnan
http://www.np.arccos
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else:

start_angle = 180

- np.degrees (arccos_value start angle)
if np.isnan(np.arccos((arccos value end angle))):

end angle = 180+0.000001
else:

end angle = 180

- np.degrees (arccos_value end angle)
# Draw semicircle around sun position
semicircle patch = Arc((sun_center x, sun center y), 2

* radius, 2 * radius,
thetal=start angle, theta2=end angle,
fill=False, color=‘blue’,
linestyle="--")

ax.add patch(semicircle patch)

# Visualization of altitude criteria (3° line)
kriteria altitude = 3

horizontal line y = kriteria altitude

x1l =0

X2 = sun_az-kriteria elongasi

ax.hlines (y=horizontal line y, xmin=x1l, xmax=x2,
color=‘red’, linestyle=‘'‘--')

x11 = sun_az+kriteria elongasi

x22 = 360

ax.hlines (y=horizontal line y, xmin=x11l, xmax=x22,
color=‘red’, linestyle=‘'‘--')

# Load and add logo

logo url = “https://drive.google.com/uc?export
=download&id=1 HEgO0C3bv33i54HlbrJKD4Zmdxap8Q8a”
response = requests.get (logo url)

response.raise for status()

logo img = Image.open(io.BytesIO (response.content))
logo box OffsetImage (logo img, zoom=0.1)

logo _ab = AnnotationBbox(logo box, (xlim max - 2.5,
sun_alt - 1), frameon=False)

ax.add artist (logo_ ab)

# Draw moon altitude line and label
ax.vlines (x=moon az, ymin=0, ymax=moon alt,
color='blue’, linestyle=‘--')


http://www.np.isnan
http://www.np.arccos
http://www.ax.hlines
http://www.ax.hlines
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
http://www.requests.get
http://www.Image.open
http://www.ax.vlines
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ax.text (moon_az+0.3, moon alt/2, f’Moon Altitude:
{moon _alt:.2f}°", color=‘blue’, fontsize=10,
ha=‘left’)

# Draw elongation line and label

ax.plot ([moon_az, sun az], [moon alt, sun _alt],
color=‘green’, linestyle=‘--')

ax.text (sun_az+2, arcl/2-1, f£’Moon Elongation:
{arcl:.2f}°", color=‘green’, fontsize=10, ha=‘left’)

# Determine visibility based on MABIMS criteria
if moon_alt >= kriteria altitude and arcl >=
kriteria elongasi:

kenampakan = “Visible”

nama_ kriteria = “MABIMS Criteria Met”
else:

kenampakan = “Not Visible”

nama_ kriteria = “MABIMS Criteria Not Met”

# Add information box
info text = (f’Moon Data:\n’
f'Altitude: {moon_alt:.2f}°\n’
f’Elongation: {arcl:.2f}°\n’
f'Visibility: {kenampakan}\n’
f'Criteria: {nama_kriteria}’)
ax.text (xlim max-7, moon alt+3.5, info text,
fontsize=12, ha=‘left’, va=‘top’,
bbox=dict (facecolor=‘white’, alpha=0.8))

# Add horizon and criteria labels

ax.text (xlim min+1, 0.1, “Horizon”, fontsize=10,
ha=‘left’)

ax.text (xlim min+1, kriteria altitude+0.1, “MABIMS
2021 Criteria”, fontsize=10, ha=‘left’)

plt.show ()
# Print data table
print (‘\n’)

print (data_table)

The result of the above code is shown in Figure 11.9.


http://www.ax.text
http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.text
http://www.ax.text
http://www.plt.show
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New Moon Observation Data for 27 May 2025
Observation Location: Banda Aceh, Indonesia
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FIGURE 11.9 Visualization of sun position at Banda Acheh Indonesia.
Exercise 2

Visualize new moon observation data for June 25, 2025, on Observation
Location: Singapore, Lat: 1.290270 N, 103.851959 E, UTC+8.

Exercise 3

Visualize new moon observation data for September 22, 2025, on Observation
Location: Kuala Lumpur, Malaysia, Lat: 3.140853 N, 101.693207 E, UTC+8.
Exercise 4

Visualize new moon observation data for October 21, 2025, on Observation
Location: Bandar Seri Begawan, Brunei, Lat: 4.890278 N, 114.942222 E,
UTC+S8.

Exercise 5

Visualize new moon observation data for December 20, 2025, on Observation
Location: Naypyidaw, Myanmar, Lat: 19.7475 N, 96.115 E, UTC+6.5.



Conclusion

The fusion of Python programming and Islamic Astronomy presented in this
textbook is not just a convergence of science and faith; it reflects the long-
standing Islamic tradition that values precision, observation, and knowledge.
Islamic Astronomy (Ilmu Falak) has historically served as a critical field to
determine acts of worship such as prayer times, Qibla direction, and the Hijri
calendar. In modern times, the use of computational tools such as Python
enhances the accuracy, reproducibility, and clarity of these determinations.

Throughout this book, we have systematically explored how Python can
be utilized to model and compute key astronomical phenomena relevant to
Islamic practices. Beginning with fundamental programming skills, we built
up to advanced computations including solar transit, shadow length analysis,
and lunar crescent visibility prediction. We introduced the Skyfield library as
a core tool, highlighting its ability to interface directly with astronomical data
and simulate celestial motion with high precision.

In Chapters 5 through 7, we demonstrated how to calculate the direction
of the Qibla and determine prayer times such as Zuhur, Asar, Maghrib, Isya’,
Syuruk, and Subh. These calculations were grounded in real astronomical
parameters such as solar altitude, Equation of Time, and observer location. We
emphasized the importance of considering elevation, atmospheric refraction,
and solar declination, factors often overlooked in manual estimations. We also
provided visualizations to help learners see the underlying logic and move-
ment of the sun in relation to the Earth’s surface.

In Chapter 8, we shifted to moonsighting, a subject of both scientific and
sociological significance in the Muslim world. Here, readers were introduced
to methods of determining the moon’s altitude, age, elongation, and azimuth,
all of which play crucial roles in validating the visibility of the lunar crescent
(hilal). Through case studies and real-world examples, readers learned how
to extract meaningful data that contributes to hilal visibility reports and the
formulation of Hijri calendars.

Chapters 9 and 10 focused on visualization techniques that support under-
standing and teaching of Falak. With Python’s graphical capabilities, learners
could plot Qibla directions, solar azimuths, and sun positions at various prayer
times. These visual outputs not only serve pedagogical purposes but also help
in validating and communicating data effectively, particularly in official or
community-level Falak determinations.
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Finally, in Chapter 11, we explored lunar crescent observation data visu-
alization using real observation scenarios from Malaysia and Indonesia.
These practical examples tied together the themes of data, visibility, and
Islamic calendar accuracy, showing that observation and computation must go
hand-in-hand.

By combining modern computational skills with classical Islamic astro-
nomical knowledge, this textbook aspires to produce a new generation of
Muslim scholars, students, and professionals who are confident in applying
scientific methods to religious obligations. This interdisciplinary skill set not
only enhances one’s understanding of Islamic rituals but also contributes to
broader scientific literacy and critical thinking.

It is our hope that this book serves as a gateway for more Muslims, par-
ticularly students in higher education and religious institutions, to explore
Islamic Astronomy as both an academic and spiritual pursuit. As we embrace
the tools of modern science, we continue the legacy of great Muslim astrono-
mers such as Al-Biruni, Al-Khwarizmi, and Al-Tusi, who exemplified the har-
mony between reason, revelation, and observation.

May this book inspire a deeper love for knowledge, a renewed commit-
ment to precision in worship, and a stronger integration of technology in the
service of our faith and community.

Wallahu a‘lam



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com
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