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Python for Islamic Astronomy: Modern Computational Approaches to Hijri 
Calendar, Qibla, and Prayer Times responds to the urgent need to improve cal-
culation accuracy and data visualizations in the field of Islamic Astronomy. This 
field is becoming increasingly complex, leading to mistakes in determining the 
beginning of the Hijri month, Qibla directions, and prayer times. This book 
offers a more precise approach by showing how the Python environment can 
be tailored for astronomical computations and how the mathematical principles 
behind Qiblah determination can be implemented through elegant Python algo-
rithms. The guide provides detailed methodologies for calculating prayer times 
with astronomical precision, allowing for accurate scheduling regardless of 
global location. The book also delves into the science of moonsighting, helping 
readers learn to compute and analyze observation data critical for Islamic cal-
endar determinations. Advanced visualization chapters bring these calculations 
to life through practical applications: develop your own Qiblah compass, create 
visual representations of the sun’s position during prayer times, and generate 
detailed lunar crescent visibility charts to aid in moon-sighting efforts. Perfect 
for programmers interested in Islamic Astronomy, religious scholars embrac-
ing technology, or anyone seeking to understand the mathematical foundations 
behind these traditional practices, this guide bridges ancient wisdom with 
modern computational techniques, making complex astronomical calculations 
accessible through the power of Python.

Key Features:

•	 The first book to provide practical guidance for using Python, 
supplemented by an interactive coding website, to solve real-world 
problems in the field of Islamic Astronomy.

•	 Uses the latest and most-trusted methods in Islamic Astronomy, 
ensuring all calculations are accurate and based on well-recog-
nized references.

•	 Includes visualizations that help readers understand key topics like 
Qibla direction, prayer time zones, and lunar crescent visibility, 
making the content practical and user-friendly.
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1Application of 
Islamic Astronomy 
for Muslim

This book is supplemented by an interactive coding website hosted on a 
Google Colab repository. Readers can explore the code used in the compu-
tation and calculation of Islamic Astronomy, observe how it is implemented 
within the Colab environment, and adjust the demonstrated code according 
to their own variables and real-life situations. Users do not need to rewrite the 
code manually from this book; instead, they can simply copy it directly from 
the Google Colab repository. Rewriting code often leads to mistakes, and the 
more mistakes made, the less enjoyable the exercise becomes; trust me, I speak 
from experience. The website contains 6 hyperlinks, which direct the user to 
the corresponding chapter. The website can be accessed on bit​.ly​/pyt​honf​oris​
lami​cast​​ronomy, or using the QR Code given in Figure 1.1.​

From this link, user can edit the code. The edited code will be saved on 
the user’s own copy of Google Colab and won’t affect the original coding.

Islamic Astronomy, also known as ‘ilm al-hay’ah, refers to the branch of 
science developed and practiced within the Islamic world that deals with the 
study of celestial bodies and their movements, primarily for religious, calen-
drical, and navigational purposes (Ilyas, 1997). This area of study combines 
observational astronomy with Islamic principles, making it a vital area of study 
for Muslims. Islamic Astronomy has historically contributed to various fields, 
from timekeeping and calendar formation to navigation and the understanding 
of celestial events (Yusuf, 2010). Its importance is seen in the precise ways it 
influences Muslims’ religious obligations and broader scientific knowledge.

One of the most practical applications of Islamic Astronomy is determin-
ing the exact times for the five daily prayers (Salah), which rely on the sun’s 
position in the sky. This ensures that Muslims perform their prayers at the cor-
rect times each day (Abas et al., 2022). In Malaysia, the Department of Islamic 
Development Malaysia (JAKIM) publishes detailed prayer timetables every 
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Application of Islamic Astronomy for 
Muslim

year, calculated using astronomical algorithms and verified through observa-
tion. Tools like the Almanak Falak JAKIM allow users to refer prayer times 
specific to the zone (Huda et al., 2014). The Umm al-Qura calendar in Makkah 
uses a combination of astronomical data and historical tradition to set prayer 
times and official schedules, especially critical for the millions of pilgrims 
during Hajj and Umrah (Rubin, 2017). The Muslim Council of Britain pro-
vides detailed prayer timetables for different cities, incorporating high-latitude 
adjustments for places like Edinburgh, where sunlight patterns complicate 
standard calculations (Ali, 2015).

The Hijri calendar is a lunar calendar in which each month begins with 
the sighting of the new crescent moon (hilal). This determination is critical for 
establishing the dates of key Islamic events such as Ramadan, Eid al-Fitr, and 
Hajj (Ilyas, 1984). Moon sighting activities are regularly held across Muslim-
majority countries. For example, in Indonesia, the Ministry of Religious 
Affairs coordinates nationwide rukyah observations, such as those conducted 
at the Pelabuhan Ratu Observatory, to verify the start of Ramadan and other 
significant months (Wahidi et al., 2019). The State Mufti Department manages 
official crescent moon sightings from sites like Bukit Agok Observatory, with 
live national broadcasts of Ramadan and Shawwal announcements (Mohd 
Nawawi et al., 2024). Morocco is known for using hisab (astronomical calcula-
tions) alongside rukyah to determine the Islamic months, often leading to dif-
ferent Ramadan start dates compared to neighboring countries (Lairgi, 2025).

Muslims must face the Kaaba in Makkah when performing prayers. 
Islamic Astronomy provides methods for determining the Qibla direction 
accurately from any point on Earth. Historically, this was done using instru-
ments like the astrolabe, and today, with the help of digital compasses and 
satellite technology (Faid, Nahwandi, et al., 2022). In recent years, researchers 
undertook a measurement project for mosque prayer spaces to ensure they were 

FIGURE 1.1  QR code for Google Colab website.
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accurately aligned with the Qibla based on updated astronomical and geospa-
tial data (Yildirim et al., 2024). Al-Azhar Mosque, one of the oldest universi-
ties in the Islamic world, underwent a Qibla realignment in 1992 after new 
astronomical surveys corrected earlier orientation errors dating back centuries 
(Rabbat, 1996). Muslim communities often use smartphone apps (e.g., Muslim 
Pro) and Google Earth Qibla services, which apply astronomical algorithms to 
pinpoint the Kaaba’s direction from anywhere in the country (Schumm, 2020).

Islamic teachings emphasize observing and responding to celestial events 
such as solar and lunar eclipses, which are occasions for special prayers. Islamic 
astronomers calculate and predict these events with precision, enabling com-
munities to observe them properly (King, 1993). During the total lunar eclipse 
on July 27, 2018, Muslim communities worldwide, including in Saudi Arabia 
and Indonesia, performed Salat al-Khusuf (eclipse prayer) and organized 
observation sessions. Observatories like Bosscha Observatory in Indonesia 
broadcasted the event live, blending scientific outreach with religious obser-
vance (Izzuddin et al., 2022). During the 2019 annular solar eclipse, mosques 
across the kingdom held Salat al-Kusuf, and observatories provided live cov-
erage with explanations linking religious practice to astronomical phenomena 
(Elmhamdi et al., 2024).

Before the advent of modern navigation tools, Islamic astronomers devel-
oped sophisticated navigation techniques based on celestial bodies. This was 
especially crucial for travelers, pilgrims, and maritime traders navigating long 
distances across deserts and seas. Muslim sailors and traders navigating the 
Indian Ocean between Africa, the Arabian Peninsula, and Southeast Asia 
used instruments like the Kamal, a simple device to measure the altitude of 
stars, to determine their position and direction. This knowledge was crucial 
in facilitating trade routes and pilgrimage journeys for centuries (Niri et al., 
2023). North African caravans traveling across the Sahara to Makkah relied 
on astronomical observations, notably the Pole Star (Polaris), to maintain their 
route across the desert. During the Ottoman Empire, maritime explorers and 
military fleets used Islamic Astronomy-based charts and instruments like the 
astrolabe and quadrant to navigate the Mediterranean and Red Sea efficiently 
(Faid, Nawawi, et al., 2022).
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2Why Python 
Matters in Islamic 
Astronomy

Python is a widely used, interpreted, object-oriented, high-level programming 
language with dynamic semantics, designed for general-purpose program-
ming. It is ubiquitous, and many people use Python-powered devices every 
day, whether they realize it or not. Python was created by Guido van Rossum 
and was first released on February 20, 1991. While you might know the 
python as a large snake, the name of the Python programming language actu-
ally comes from an old BBC television comedy sketch series called “Monty 
Python’s Flying Circus” (Mehare et al., 2023). One of the great features of 
Python is that it is truly the work of one person. Typically, new programming 
languages are developed and published by large companies employing many 
professionals, and due to copyright regulations, it is very difficult to name 
any individuals involved in such projects. Python is an exception (Faid, Mohd 
Nawawi, et al., 2024).

Of course, Guido van Rossum did not develop and expand all the com-
ponents of Python by himself. The rapid spread of Python across the globe 
is the result of the continuous work of thousands of (very often anonymous) 
programmers, testers, users (most of them not IT experts), and enthusiasts, 
but it must be said that the initial idea (the seed from which Python sprouted) 
came from one person – Guido (Ozgur et al., 2021). Python is maintained 
by the Python Software Foundation, an organization and community ded-
icated to developing, improving, expanding, and popularizing the Python 
language and its environment. There are billions of lines of code written 
in Python, which means nearly unlimited opportunities for code reuse and 
learning from well-designed examples. Moreover, there is a large and highly 
active Python community, always happy to help (Faid, Nawawi, Saadon, et 
al., 2023).

Python for Islamic Astronomy Why Python Matters in Islamic Astronomy
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Why Python Matters in Islamic Astronomy

Several factors make Python great for learning:

•	 It’s easy to learn – The time required to learn Python is shorter 
than many other languages, meaning you can start real program-
ming more quickly.

•	 It’s easy to use for writing new software – Often, it’s possible to 
write code faster when using Python.

•	 It’s easy to obtain, install, and use – Python is free, open-source, 
and cross-platform; not all languages can boast that.

Programming skills prepare you for a career in almost any industry and are 
essential if you want to pursue more advanced and higher-paying software 
development and engineering roles. Python is a programming language that 
opens more doors than others. With solid Python knowledge, you can work in 
various jobs and industries. And the more you understand Python, the more 
you can do in the 21st century. Even if you don’t need it for work, you’ll find it 
useful to know (Blank & Deb, 2020).

Python is a great language for science, particularly in astronomy. Various 
packages like NumPy, SciPy, Scikit-Image, and Astropy (to name just a few) 
are all excellent examples of Python’s suitability for astronomy, and there are 
many use cases. [NumPy, Astropy, and SciPy are fiscally sponsored projects 
by NumFOCUS; Scikit-Image is an affiliated project.] These tools make it 
easier to use Python in various astronomical projects.

For example, the European Southern Observatory (ESO), which operates 
the Very Large Telescope (VLT), offers data for download on their site. You 
can visit www​.eso​.org​/UserPortal and create a username for their portal. If 
you’re looking for data from the SPHERE instrument, you can download full 
datasets for any nearby stars with exoplanet or protoplanetary disks. It’s a fan-
tastic and engaging project for any Pythonista to reduce that data and make the 
hidden planets or disks visible amid the noise (Rhodes, 2011).

By using the tools offered by NumPy, SciPy, Astropy, Scikit-Image, 
and many more in combination, with a little patience and persistence, it’s 
possible to analyze vast amounts of available astronomical data to produce 
some stunning results. Python plays a significant role in Islamic Astronomy, 
particularly in determining prayer times, the Qibla direction, and the begin-
ning of the Hijri months. These aspects are central discussions in Islamic 
Astronomy.

http://www.eso.org/UserPortal
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PRAYER TIMES CALCULATION

The determination of prayer times involves using the position of the sun as a ref-
erence to measure the start and end times of each prayer. The position of the sun 
after its zenith is used to determine Zuhr, the sun’s shadow for Asr, sunrise and 
sunset for Maghrib and Syuruk, while the sun’s light below the horizon is used 
for Fajr and Isha (Faid et al., 2019). Python, with its libraries such as NumPy, 
SciPy, and Astropy, can be used to perform precise calculations of the sun’s posi-
tion, which is crucial for determining accurate prayer times (Faid et al., 2021).

QIBLA DIRECTION DETERMINATION

The determination of the Qibla direction requires accurate readings of lati-
tude and longitude. Historically, Islamic scholars used the position of the sun 
and solar eclipses to determine these coordinates (Faid, Husien, et al., 2016). 
Today, GPS provides latitude and longitude, but surveyors and astronomers 
still require sun position data to obtain the azimuth direction. Python can be 
used to calculate the azimuth angle accurately, incorporating latitude, longi-
tude, and the sun’s position, which is vital for ensuring that the Qibla direction 
is correct (Amin, 2018).

DETERMINING THE BEGINNING 
OF THE HIJRI MONTHS

The beginning of an Islamic month is determined by the visibility of the cres-
cent moon (Shariff et al., 2016). The moon’s visibility depends on its position 
relative to the sun, and the calculations involved are more complex than those 
for the sun because of the moon’s faster and more dynamic movement influ-
enced by the gravitational forces of the sun and the Earth. Python, through 
the use of libraries like Astropy, allows for precise calculations of the moon’s 
position, which is essential for determining the new moon and thus the start of 
the Hijri month (Muztaba et al., 2023).
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3Importance of 
Accuracy of 
Calculation

The precision in calculating the positions of the sun and moon directly impacts 
the determination of prayer times, the Qibla direction, and the visibility of the 
crescent moon. If these calculations are inaccurate, it could lead to incorrect 
prayer times, Qibla direction, or the start of the Islamic month. Therefore, 
it is crucial for those in authoritative positions to use accurate calculations. 
Public institutions like JAKIM, JUPEM, and the State Mufti Departments in 
Malaysia are responsible for producing accurate data, which the public relies 
on (Shariff et al., 2017). For example, the Qibla direction of mosques and 
suraus must be certified by official surveyors and the Mufti Department to 
ensure that the direction used by the local Muslim community is accurate. 
Similarly, the release of Prayer Time Tables and the annual Hijri Calendar 
involves precise calculations and is usually vetted by the State Falak Council 
before being published (Faid, Shariff, et al., 2016).

As the public, they are not burdened with performing these precise calcu-
lations ourselves. Instead, we are encouraged to rely on authoritative sources 
for accurate information. However, increasing public awareness and under-
standing of Islamic astronomical calculations can enhance appreciation for 
this knowledge and reduce confusion and the spread of misinformation (Faid 
et al., 2018). By using Python in Islamic Astronomy, we can harness its power 
to perform accurate and efficient calculations, ensuring that the Islamic prac-
tices related to time and direction are observed correctly and consistently 
(Faid et al., 2025). Accuracy in Islamic Astronomy is a highly critical aspect, 
particularly in determining the new Hijri month (Syazwan Faid et al., 2025). 
This is due to several factors that have a direct impact on the religious practices 
of Muslims, as well as broader social and economic implications (Wahyuni et 
al., 2022).
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Importance of Accuracy of Calculation

ACCURATE DETERMINATION 
OF RELIGIOUS PRACTICES

The determination of the new Hijri month is crucial as it sets the dates for key 
events in the Islamic calendar, such as the beginning of Ramadan, Eid al-Fitr, 
and Eid al-Adha. Accuracy in determining the Hijri month ensures that prac-
tices like fasting and the Eid prayer are performed on the correct days. Even a 
deviation as small as 0.5 degrees in the moon’s position can lead to differences 
in date determination, potentially causing confusion within the community 
(Adegoke, 2013, 2017).

SOCIAL AND ECONOMIC IMPACT

Errors in determining the Hijri month can lead to misunderstandings among 
Muslims, especially in societies where religious dates play a significant role 
in social and economic planning. For instance, a change in the date of Eid 
can affect various aspects such as holiday planning, festival preparations, and 
related economic activities (Mohd Nawawi et al., 2024).

IMPORTANCE OF MODERN 
TECHNOLOGY AND CALCULATIONS

The use of modern technology, such as programming in Python, and advanced 
astronomical tools, allows for more accurate and consistent calculations in 
determining the Hijri month. These calculations involve various astronomi-
cal factors, such as the positions of the moon, sun, and Earth, as well as other 
factors like weather conditions and topography that can affect the visibility of 
the new moon (Junaidi, 2022). By employing advanced algorithms and pre-
cise mathematical calculations, the likelihood of errors in determining the 
Hijri month is significantly reduced. This accuracy is essential to ensure that 
Muslims worldwide can practice their faith with full confidence that the dates 
they observe are correct and valid (Gharaybeh, 2025).
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COMPLEXITY OF CALCULATIONS

The process of calculating the new Hijri month is highly complex, involving 
hundreds of mathematical formulas and thousands of variables. Every aspect 
must be meticulously calculated to ensure accurate results. For example, fac-
tors such as the moon’s altitude angle, the distance between the moon and 
the sun, and the times of sunset and moonset all play crucial roles in these 
calculations. Any error in these calculations can lead to incorrect date deter-
mination, which not only affects religious practices but can also cause confu-
sion and division among Muslims (Faid, Shariff, et al., 2024; Meeus, 1991). 
Therefore, accuracy in Islamic Astronomy is not only necessary to maintain 
the correctness of religious practices and rituals but also to ensure social har-
mony and stability within the community (Faid, Nawawi, et al., 2024). By 
leveraging technology and precise scientific approaches, Muslims can observe 
their religious practices with greater confidence and alignment with the teach-
ings of their faith. With the advancement of technology, the use of astronomi-
cal calculation software and programming algorithms has greatly facilitated 
this process, ensuring that each calculation is done accurately and efficiently. 
However, even with the aid of technology, expertise and in-depth knowledge 
of Islamic Astronomy are still required to ensure accuracy in determining the 
new Hijri month (Rasyid et al., 2024).

Python can be utilized to model and visualize astronomical data in a 
highly efficient and accurate manner. Below are some specific applications of 
Python in the field of Islamic Astronomy (Falak).

CALCULATION AND VISUALIZATION 
OF CRESCENT MOON POSITION

Python can be used to accurately calculate the position of the moon each night. 
By applying precise astronomical formulas, it is possible to determine the time 
and location where the crescent moon will be visible. Python also allows us to 
plot the moon’s movement in the form of graphs or maps, making it easier for 
astronomers to predict and confirm the visibility of the crescent moon. This is 
crucial for determining the start of the Hijri month and Islamic celebrations 
like Ramadan and Shawal (Rasyid et al., 2023).
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CALCULATION AND VISUALIZATION 
OF PRAYER TIMES

Python can be employed to calculate prayer times based on the sun’s posi-
tion. By inputting geographical location data, Python can calculate sunrise, 
solar noon, sunset, and other critical times needed to determine prayer times. 
Additionally, Python can plot the sun’s position and the brightness of the sky 
throughout the day. This helps astronomers and the general public understand 
the changes in prayer times throughout the year, including variations due to 
seasonal changes and location (Razzak, 2024).

CALCULATION OF QIBLA DIRECTION

Python can be used to calculate the sun’s shadow trajectory to determine the 
Qibla direction. By calculating the sun’s position at a specific time, we can 
determine the direction of the shadow that will indicate the accurate Qibla 
direction. This is particularly useful for ensuring that the prayer direction is 
correct, especially in places where visual guidance might not be available. 
Python can generate maps or graphs showing the Qibla direction for various 
locations around the world (Asrin et al., 2018). By using Python, we can sim-
plify and expedite calculation processes that would otherwise require a signifi-
cant amount of time and effort if done manually. Python not only simplifies 
the calculation process but also ensures that the results are accurate and reli-
able. This makes Python an invaluable tool in the field of Islamic Astronomy 
(Falak) and Islamic Astronomy at large (Al-Rajab et al., 2023; Loucif et al., 
2024).
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4Setting up Python 
for Astronomical 
Calculations

GETTING STARTED WITH PYTHON

Google Colaboratory, commonly known as Google Colab, is a free cloud-based 
platform provided by Google that allows users to write and execute Python 
code through the browser. It is especially popular among data scientists, edu-
cators, and researchers for its simplicity, power, and seamless integration with 
Google Drive. No installation is required, just a Google account.

With Google Colab, you can:

•	 Write and run Python code instantly.
•	 Use pre-installed scientific libraries like NumPy, Pandas, Matplotlib, 

and more.
•	 Collaborate with others in real time.
•	 Save and share notebooks easily through Google Drive.

This makes it a convenient tool for projects such as calculating Islamic 
Astronomy matter using Python.

Python for Islamic Astronomy

DOI:  10.1201/9781003649120-4

10.1201/9781003649120-4

http://dx.doi.org/10.4324/9781003649120-4
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Setting up Python for Astronomical 
Calculations

USING PYTHON FOR PRAYER TIME 
CALCULATIONS IN GOOGLE COLAB

You can use Google Colab to run Python scripts that calculate prayer times 
based on astronomical data and geographical coordinates. Here’s how to get 
started:

Step 1: Access Google Colab
Go to https://colab​.research​.google​.com. You’ll need to sign in with 

your Google account.
Step 2: Create a New Notebook

•	 Click on “File” > “New Notebook”.
•	 A new notebook with a Python environment will open in your 

browser.
Step 3: Install dependencies or libraries and start coding!

BASIS OF PYTHON OPERATION

Python can handle basic arithmetic just like a scientific calculator. Below are 
the key operations:

Addition

    a = 10
    b = 5
    result = a + b
    print(result) # Output: 15

Subtraction

    a = 10
    b = 5
    result = a − b
    print(result) # Output: 5

https://colab.research.google.com
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Multiplication

    a = 10
    b = 5
    result = a * b
    print(result) # Output: 50

Division

    a = 10
    b = 5
    result = a / b
    print(result) # Output: 2.0

Integer Division

    a = 10
    b = 3
    result = a // b
    print(result) # Output: 3

Modulus

    a = 10
    b = 3
    result = a % b
    print(result) # Output: 1

Exponentiation

    a = 2
    b = 3
    result = a ** b
    print(result) # Output: 8

To use trigonometric functions, we import the math module. Python’s math 
functions work in radians, not degrees.



14  Python for Islamic Astronomy﻿

Importing Math Module

    import math

Convert Degrees to Radians

    degrees = 90
    radians = math.radians(degrees)
    print(radians) # Output: 1.5707963267948966

Trigonometric Functions

Sine (sin)
    angle = 30
    result = math​.s​in(math.radians(angle))
    print(result) # Output: 0.49999999999999994

Cosine (cos)
    angle = 60
    result = math​.c​os(math.radians(angle))
    print(result) # Output: 0.5000000000000001

Tangent (tan)

    angle = 45
    result = math​.t​an(math.radians(angle))
    print(result) # Output: 0.9999999999999999

Inverse Tangent (Arctangent/atan)

The atan() function returns the angle (in radians) whose tangent is the given 
number. To convert it into degrees, use math.degrees():

    x = 1 # tan(angle) = 1
    angle_rad = math​.at​an(x)
    angle_deg = math.degrees(angle_rad)
  �  print(angle_rad) # Output: 0.7853981633974483 

(radians)
    print(angle_deg) # Output: 45.0 (degrees)

http://www.math.sin
http://www.math.cos
http://www.math.tan
http://www.math.atan
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This is especially useful in triangle calculations, astronomy, and physics 
when determining angles based on known side ratios.

BASIC CONDITIONAL 
STATEMENTS IN PYTHON

Conditional statements allow your program to make decisions based on certain 
conditions. This is useful in nearly all practical applications.

The if Statement

The if statement executes a block of code only if a specified condition is true.

    temperature = 30
    if temperature > 25:
       print(“It’s a hot day.”)

The else Statement

The else block runs when the if condition is false.

    temperature = 20
    if temperature > 25:
       print(“It’s a hot day.”)
    else:
       print(“It’s a nice day.”)

Using or in Conditions

The or keyword checks if at least one of multiple conditions is true.

    day = “Sunday”
    is_holiday = True

    if day == “Sunday” or is_holiday:
       print(“You can rest today.”)
    else:
       print(“It’s a working day.”)
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Combined Example

Here is a real-world style example:

    score = 80
    if score >= 90:
       print(“Excellent”)
    elif score >= 70:
       print(“Good job”)
    else:
       print(“Keep trying”)

Explanation

•	 If the score is 90 or more → print “Excellent”
•	 If the score is 70 or more (but less than 90) → print “Good job”
•	 If the score is less than 70 → print “Keep trying”

Output
    Good job

Another Example Using or

    score = 60
    if score < 70 or score > 100:
       print(“Score needs review”)
    else:
       print(“Score is acceptable”)

Output

    Score needs review

These basic control structures allow your Python programs to make decisions 
and react to different inputs. This shows how Python checks conditions in 
order. It stops at the first condition that is True. These if, else, and or statements 
give your Python program logic, allowing it to behave differently based on 
input or conditions. This is essential in automation, data filtering, simulations, 
and more.
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print() in Python

The print() function is used to display information or output on the screen. It is 
one of the most basic and commonly used functions in Python programming.

    print(“Welcome to the world of Python!”)

Output

    Welcome to the world of Python!

You can also print numbers or the result of calculations:

    print(5 + 3)

Output

    8

The print() function is essential for checking values, debugging, and interact-
ing with users. Sometimes, you want to print a sentence that includes variable 
values, such as a person’s name or age. In Python, this is made easier and 
cleaner with formatted strings, also called f-strings.

    name = “Aminah”
    age = 18
    print(f”My name is {name} and I am {age} years old.”)

Output

    My name is Aminah and I am 18 years old.

In this example, the f before the quotation mark tells Python to treat the string 
as a formatted string. Inside the curly braces {}, Python will insert the value 
of the variable. You can even include calculations:

    length = 5
    width = 3
    print(f”The area is {length * width} square units.”)
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Output

    The area is 15 square units.

Formatted strings make your code shorter, cleaner, and easier to understand, 
especially when combining text and values. Sometimes you want to control 
the number of decimal places shown. You can use format specifiers like :.2f to 
round to 2 decimal places.

    azimuth_kiblat = 292.347182
    print(f”Azimuth Kiblat: {azimuth_kiblat:.2f}”)

Output

    Azimuth Kiblat: 292.35

In {azimuth_kiblat:.2f}:

•	 : starts the format
•	 .2f means 2 decimal places in floating-point format

This is very useful in math, geography, and science applications.

CONVERTING DECIMAL DEGREES TO 
DEGREES, MINUTES, AND SECONDS

In many fields such as geography, surveying, and navigation, angles are often 
represented not just in decimal degrees (e.g., 292.35°) but in a more traditional 
format: Degrees, Minutes, and Seconds (DMS). While decimal degrees are 
easier for calculations, DMS format is more readable and commonly used in 
GPS coordinates, navigation systems, and official land records.

Given a decimal degree value:

	 1.	Degrees: The whole number part of the decimal degree
	 2.	Minutes: Multiply the decimal part by 60, then take the whole 

number
	 3.	Seconds: Multiply the remaining decimal by 60 again



﻿4  •  Setting up Python for Astronomical Calculations  19

Example: Convert 292.35° to DMS

	 1.	Degrees = 292
	 2.	Decimal part = 0.35
	 3.	Minutes = 0.35 × 60 = 21.0 → 21 minutes
	 4.	Seconds = 0.0 × 60 = 0 → 0 seconds

Final Answer

292.35∘=292∘ 21′ 0″292.35^\circ = 292^\circ\ 21′\ 0″292.35∘=292∘ 21′ 0″

Here is a Python script that performs this conversion:

decimal_degree = 292.35

    # Step 1: Get whole degrees
    degrees = int(decimal_degree)
    # Step 2: Get the decimal part and convert to minutes
    decimal_part = decimal_degree − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)

    # Step 3: Convert the decimal part of minutes to seconds
    seconds = round((minutes_total − minutes) * 60)

  �  p​rint(​f”{de​cimal​_degr​ee}° = {degrees}° {minutes}′ 
{seconds}″”)

Output

    292.35° = 292° 21′ 0″

This method is useful for displaying locations and angles in a standardized, 
human-friendly format.

INSTALLING PYTHON 
PACKAGES WITH PIP

As you begin writing Python programs, you will often need to use additional 
tools, libraries, or frameworks that are not included in Python by default. 
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These tools are called packages. Python provides a powerful command-line 
tool called pip to help you install and manage these packages easily.

What Is pip?

pip stands for “Pip Installs Packages”. It is the official package installer for 
Python.

With pip, you can:

•	 Install new Python libraries (like numpy, matplotlib, flask)
•	 Upgrade packages
•	 Uninstall packages
•	 Check what packages are installed

Installing a Package Using pip

You can install a Python package from the internet using this simple command:

    pip install package_name

Example

To install requests, a popular package for HTTP:

    pip install requests

Listing Installed Packages

To view all packages currently installed:

    pip list

This will show the name and version of each package. pip is a tool for install-
ing and managing Python packages. You can install, upgrade, and remove 
packages easily using simple commands. pip connects to the Python Package 
Index (PyPI) to download packages from the internet. Learning to use pip is 
essential for working with real-world Python projects.
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WORKING WITH DATES AND TIMES IN 
PYTHON, THE DATETIME MODULE

In many real-world programs, especially those involving calendars, logs, 
astronomical events, or scheduling, you need to work with dates and times. 
Python makes this easy through a built-in module called datetime.

The datetime module allows you to:

•	 Create and manipulate dates and times
•	 Extract day, month, year, hour, minute, etc.
•	 Perform date arithmetic (e.g., add days, subtract dates)
•	 Format dates into readable strings

Importing the Datetime Module

To use the datetime features, you first need to import it:

    from datetime import datetime

This line imports the datetime class from the datetime module.

Creating a Specific Date

You can define a date and time using the datetime() constructor:

    date = datetime(2024, 1, 14)

This creates a datetime object representing:

•	 Year: 2024
•	 Month: January (1)
•	 Day: 14

By default, the time is set to midnight (00:00:00) if not specified.
You can also include the time:

    date = datetime(2024, 1, 14, 15, 30)

This means 14 January 2024, at 3:30 PM.
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Accessing Date Components

Once a datetime object is created, you can access parts of it:

  ​  print​(date​​.ye​ar​) # 2024
    print(date​.mon​th) # 1
    print(date​.d​ay) # 14

You can also get the day of the week or day of the year:

  ​  print​(date​.week​day()​) # 6 (Sunday; Monday is 0)
  �  p​rint(​date.​timet​uple(​).tm_​yday)​ # 14 (14th day of the 

year)

Why Is This Useful?

Handling dates and times accurately is essential in:

•	 Astronomical calculations (like Qibla direction)
•	 Logging timestamps in applications
•	 Scheduling tasks or sending reminders
•	 Managing calendar events

Loop

A loop in programming is used to repeat a set of instructions if a certain con-
dition is true. Loops are useful when we want to:

•	 Repeat a task many times
•	 Search for a value
•	 Simulate continuous or time-based processes

Python provides two main types of loops:

•	 for loop – used when you know how many times you want to repeat
•	 while loop – used when you want to repeat until a condition is met

A while loop continues executing the code inside it as long as the condition 
is true.

    while condition:
    # do something
    If the condition becomes false, the loop stops.

http://www.date.year
http://www.date.month
http://www.date.day
http://www.date.weekday
http://www.date.timetuple
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Example 1: Simple Counter

    count = 0
    while count < 5:
    print(“Counting:”, count)
    count += 1
    Counting: 0
    Counting: 1
    Counting: 2
    Counting: 3
    Counting: 4

Why Use while?

Use while when:

•	 You don’t know how many times the loop should run.
•	 You’re waiting for a condition to become true.

Example

Write a loop that prints numbers until the square of the number is greater than 
100.

python

    n = 1
    while True:
    print(n)
    if n * n > 100:
    break
    n += 1

Summary

•	 while loops are perfect for conditions with unknown repetitions.
•	 Always ensure there’s a way to exit the loop.
•	 They’re useful for simulations, astronomy calculations, and search-

based problems.
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USING SKYFIELD

Skyfield is a Python library designed to calculate the positions of stars, plan-
ets, and satellites orbiting the Earth. Its results are expected to align with 
the positions generated by the United States Naval Observatory and their 
Astronomical Almanac within 0.0005 arcseconds (half a milli-arcsecond, or 
mas). Skyfield is written entirely in pure Python and can be installed with-
out any compilation, making it accessible for various Python environments. 
It supports Python versions 2.6, 2.7, and 3, with NumPy as its only binary 
dependency. NumPy is a fundamental package for scientific computing with 
Python, and its vector operations make Skyfield efficient. Before Skyfield was 
developed, an older version known as PyEphem was used. Skyfield builds on 
the capabilities of PyEphem, offering more accurate and modern astronomical 
calculations (Faid, Mohd Nawawi, et al., 2023; Faid, Nawawi, & Saadon, 2023; 
Faid, Nawawi, Wahab, et al., 2023).

PyEphem uses popular astronomical calculation techniques derived 
from Jean Meeus’s Astronomical Algorithms, such as the IAU 1980 model 
of Earth’s nutation and the VSOP87 planetary theory. These techniques are 
still employed by various authoritative bodies around the world (Holwerda et 
al., 2016). PyEphem offers accuracy up to 1 arcsecond, which is sufficient 
for calculating lunar and solar data. However, for new projects, the Skyfield 
library should be prioritized over PyEphem. Its modern design encourages 
better Python coding practices and utilizes NumPy to accelerate calcula-
tions. PyEphem’s reliance on C libraries often results in frustrating installa-
tion issues. If the Python Package Index (PyPI) doesn’t have a wheel for your 
system, you would need a C compiler and a Python development environment 
to install PyEphem.

Another drawback of PyEphem is its handling of angular units, which 
can be confusing. The library tries to be clever by interpreting string inputs 
like ‘1.23’ as degrees of declination (or hours, when setting the right ascen-
sion), but floating-point inputs like 1.23 are assumed to be in radians. The 
angles returned by PyEphem add to the confusion: when printed, they display 
in degrees, but performing arithmetic on them reveals that they are in radi-
ans. This leads to significant confusion and makes the code harder to read, 
but fixing it would break existing programs that rely on PyEphem. Moreover, 
PyEphem’s compute () method modifies its objects in place rather than return-
ing a result. While this reflects how the underlying C library operates, it makes 
using compute () in list comprehensions difficult, you end up with a list of 
None objects. Therefore, in this context, Skyfield will be used for calculat-
ing lunar and solar data. Skyfield’s advantages, such as modern design, better 
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integration with Python, and ease of use, make it a superior choice for astro-
nomical calculations in contemporary projects. Skyfield is a modern Python 
library that makes it easy to compute positions of planets and other celes-
tial objects using high-precision data from NASA’s Jet Propulsion Laboratory 
(JPL). This guide explains how to install and use the DE440s ephemeris, 
which contains positional data for the solar system.

Step 1: Install the Skyfield Library

To begin, install the Skyfield library in Google Colab or Jupyter Notebook. In 
a new cell, type the following and press Shift + Enter:

    !pip install skyfield

This will install the core Skyfield library, which is needed to perform astro-
nomical computations.

Step 2: Understand What an Ephemeris Is

An ephemeris is a table or dataset that provides the positions of celestial 
objects at regular intervals. Skyfield uses ephemerides published by NASA 
JPL to calculate accurate positions of planets and the moon. For this exam-
ple, we will use DE440s, a compact but high-accuracy ephemeris suitable for 
many applications.

Step 3: Load the Ephemeris DE440s

Next, we will load the DE440s ephemeris using Skyfield. Type the following 
code into a new cell:

    from skyfield​.a​pi import load
    # Load the time scale
    ts = load.timescale()
    # Load the ephemeris data (DE440s) from the internet
    planets = load(‘de440s​.b​sp’)

load.timescale() prepares the time system used in calculations. load(‘de440s​.b​
sp’) downloads and loads the DE440s ephemeris file. This file will be down-
loaded from the internet the first time you run the code. Make sure your inter-
net connection is stable.

http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.de440s.bsp
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Step 4: Verify Successful Loading

Once the ephemeris file is downloaded, Skyfield will store it locally (or in the 
Colab session temporarily). If successful, no error will be shown, and you can 
now access planetary positions like this:

    earth = planets[‘earth’]
    mars = planets[‘mars’]
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5Qiblah Calculation 
Using Python

The calculation of the Qibla direction is based on three points of location. The 
first is the location of the Kaaba, which is located at 21.4225 North, 39.8262 
East. The second location is the calculated position of the observer. The third 
point is the north pole, where it acts as the axis for the angle between Kaaba 
and the calculated position. Therefore, the formula for the Qibla direction 
toward the Kaaba from the calculated position is,

	 � � �� �� � �Location Kaabah 	 Equation 5.1

∆λ is the formula for calculating the distance from the longitude of the Kaaba 
to the longitude of the place for a location located in the east longitude, which 
can be obtained by calculating the difference in the values ​​of the two longi-
tudes. Then,

	 A � �sin � 	 Equation 5.2

	 B=cos tan( )� �Location Kaabah� �� 	 Equation 5.3

	 C=sin cos� �Location � � 	 Equation 5.4

	 D �
�� �

A
B C 	 Equation 5.5

Then the Qibla Direction (θ ) is calculated using the formula,

	 � � � ��Tan D1 	 Equation 5.6

Python for Islamic Astronomy
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Qiblah Calculation Using Python

The formula for Qibla Calculation above can only be used for locations in 
Southeast Asia. This is because the calculation formula for calculating (∆λ) 
only considers conditions when a location is in the east longitude which has a 
value greater than the longitude of the Kaaba. To make the formula for calcu-
lating the direction of the Qibla can be used in all locations in the east and west 
longitudes, the distance from the longitude of the Kaaba to the longitude of the 
place (∆λ) is calculated using the following formula:

	 dev abs Location Kaabah� �� �� � 	 Equation 5.7

	 Distance between Longitude,� �
� �

�
�

360 180

180

dev if dev

dev if dev

,

,

��
�
�

	 Equation 5.8

The value of location longitude in the formula is positive if the location is in 
east longitude, and it is negative if the location is in west longitude.

In the Universal Qibla Direction Calculation, the reference value of the 
Qibla direction (θ ) is not always from North to West. However, it can vary 
depending on the Qibla direction value (θ ) and the Longitude of the Place 
( λlocation ). To find out the reference of Qibla direction, use the following 
provisions:
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“UB” is a statement that the Qibla direction uses a reference from the 
north to the west.

“SB” is a statement that the Qibla direction uses a reference from the 
south to the west.

“UT” is a statement that the Qibla direction uses a reference from the 
north to the east.

“ST” is a statement that the Qibla direction uses a reference from the 
south to the east.
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The Azimuth of Qibla formula also varies depending on the reference of Qibla 
Direction value (θ ). To find out the Azimuth of Qibla value, use the following 
provisions:

	 Azimuth Kiblat �

�
�

�

�

�
�
�

�
�
�

360

180

180

�
�

�
�

if UB

if SB

if UT

if ST

	

QIBLA CALCULATION

Exercise 1

Determine the Qibla direction of Penang, which has geographical latitude of 
5.2632 North and 100.4846 East. The Qaabah geographical latitude is 21.4225 
North, longitude is 39.8262 East. First, determine the variables, which are 
written in Python as,

    φ_Location = 5.2632
    λ_Location = 100.4846
    φ_Kaabah = 21.4225
    λ_Kaabah = 39.8262
    Difference_Longitude = (λ_Location−λ_Kaabah )

Second, perform the calculation. Using the above formula, the calculation can 
be written in Python as

In Python, this is written as

    import math
    A = math.​​s​in(m​ath.r​adian​s(abs​(Diff​erenc​e_Lon​gitud​e)))

To confirm the result of A, write in Python

    print(A)
    0.8717137230643722

Next, to calculate B to D, in Python is written as,

  �  B = math.​​c​os(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​t​an(m​ath.r​
adian​s(φ_K​aabah​))

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
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    print(B)
    0.3906945822201198
  �  C = math.​​s​in(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​c​os(m​ath.r​

adian​s(Dif​feren​ce_Lo​ngitu​de))
    print(C)
    0.0449496276198435
    D = A/((B−C))
    print(D)
    2.5212623104570837

The direction of the Qibla θ is calculated in Python as

    θ = math.degrees(math​.at​an(D))
    print(θ)
    68.36540021170762

The direction of the Qibla does not necessarily translate to the azimuth of 
the Qibla based on the magnetic compass. Our phone determines the azimuth 
based on the reference of the magnetic compass. Therefore, a minor computa-
tion needs to be added to determine the azimuth of the Qibla. First, correction 
of the difference in longitude based on Equation 5.8, written in Python as,

    #Determine the Azimuth of the Qibla
    if Difference_Longitude > 180:
      delta_λ = 360 − Difference_Longitude
    else:
      delta_λ = Difference_Longitude
    print(delta_λ )
    60.6584

Then, the quadrant of the calculated user geographical location, with Kaaba as 
the center of the quadrant, in Python,

    if θ > 0:
           if λ_Location > λ_Kaabah:
                   quadrant = “UB” # Utara Barat
           elif λ_Location <= λ_Kaabah:
                    quadrant = “UT” # Utara Timur
       elif λ_Location < 0:
                   if c >= 180:
                                   quadrant = “UB”
                   else:
                                   quadrant = “UT”

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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    elif θ < 0:
       if λ_Location > λ_Kaabah:
          quadrant = “SB” # Selatan Barat
       elif λ_Location <= λ_Kaabah:
                 quadrant = “ST” # Selatan Timur
    elif λ_Location < 0:
        if c >= 180:
                quadrant = “SB”
                else:
                        quadrant = “ST”
    print(quadrant)
    UB

If the quadrant is UB, meaning Utara-Barat in Malay or Northwest in English. 
This means that the Azimuth of the Qibla is located at the Northwest from the 
computed location. To convert from Qibla direction to Qibla azimuth, written 
in Python

    if quadrant == “UB”:
      azimuth_kiblat = 360 − θ
    elif quadrant == “SB”:
      azimuth_kiblat = 180 − θ
    elif quadrant == “UT”:
      azimuth_kiblat = θ
    elif quadrant == “ST”:
      azimuth_kiblat = 180 + θ
    print(azimuth_kiblat)
    291.63459978829235

Therefore, the azimuth of the Qibla is 291.63 degree. To convert the result in 
degree,

    # To Convert in Degree Form
    degrees = int(azimuth_kiblat)
    decimal_part = azimuth_kiblat − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)
    # Step 3: Convert the decimal part of minutes to 
seconds
    seconds = round((minutes_total − minutes) * 60)
  �  print(f”{azimuth_kiblat}° = {degrees}° {minutes}′ 

{seconds}″”)
    291.63459978829235° = 291° 38′ 5″
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Finally, to print the result in a text

  �  print(f’The azimuth of the Qibla for Location with 
coordinates {φ_Location} N Latitude, {λ_Location} 
Longitude, is {azimuth_kiblat:0.2f}’)

  �  The azimuth of the Qibla for Location with coordinates 
5.2632 Latitude, 100.4846 Longitude, is 291.63

Exercise 2

Determine the Qibla direction of a location that has geographical latitude of 
1.21 South and 108.411 East. Use the coding from the Google Colab website 
to generate the azimuth.

Exercise 3

Determine the Qibla direction for the city of Edinburgh, which has geographi-
cal latitude of 55.9533° North and 3.1883° West. This exercise is not available 
on the Google Colab website, meaning you need to make your own, based on 
the example provided.

Exercise 4

Calculate the azimuth of the Qibla for the city of Apia in Samoa with geo-
graphical latitude of 13.833 South and geographical longitude of 171.75 West.

Exercise 5

Calculate the azimuth of the Qibla for the city of Washington, DC, in the USA 
with geographical latitude of 38.904722 North and geographical longitude of 
77.016389 West.
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6Istiwa’ A’zam and 
Rashdul Qibla

Istiwa’ A‘zam refers to the astronomical event when the sun is directly above 
the Kaaba in Makkah. During this moment, the shadow of any vertical object 
anywhere on Earth points directly away from the Kaaba, making it one of 
the most accurate methods for determining the Qibla (prayer direction). This 
phenomenon is not affected by Earth’s magnetic field, unlike compass-based 
Qibla methods, making it especially reliable.

Istiwa’ A‘zam happens twice a year, when the apparent path of the sun 
crosses the exact latitude of the Kaaba, which occurs on 28th May and 15th 
July approximately. On these dates, the sun passes directly overhead the 
Kaaba, around 12:16 p.m. (Saudi time).

At the time of Istiwa’ A‘zam: The sun is directly over the Kaaba. A vertical 
stick or object will cast a shadow that points exactly in the opposite direction 
of the Qibla. This method is free from magnetic disturbances, unlike a com-
pass. Thus, shadows on these dates provide a natural, accurate Qibla direction, 
especially for mosques or homes without modern tools.

However, since Istiwa’ A‘zam only occurs twice a year, it is not always 
practical for everyday or long-term Qibla alignment. For this reason, Muslims 
use Rashdul Qibla, which refers to the general calculation of the Qibla direction 
using sun shadow. Rashdul Qibla refers to the determination of the Qibla direc-
tion using the sun’s position and the direction of its shadow. When the sun’s 
azimuth matches the azimuth of the Qibla, the shadow of any upright object 
will point directly opposite the Kaaba, effectively giving an accurate Qibla 
direction. This moment can be calculated for any location in the world, not just 
during the special events of Istiwa’ A‘zam (when the sun is directly above the 
Kaaba). Thus, Rashdul Qibla can be used on many dates throughout the year.

Modern tools like mobile compasses often suffer from magnetic interfer-
ence, leading to significant inaccuracies, up to 20° in some cases. This could 
result in the prayer direction being off by over 1000 km from the Kaaba. In 
contrast, the sun’s position can be precisely calculated using astronomical 
algorithms and ephemeris data. This makes Rashdul Qibla:
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Istiwa’ A’zam and Rashdul Qibla

•	 Independent of magnetic errors.
•	 Applicable worldwide.
•	 Simple to verify using natural observation.

While Istiwa’ A‘zam only happens twice a year (around 28 May and 15 July), 
Rashdul Qibla can be calculated for any day using the method of finding when 
the sun’s azimuth equals the Qibla azimuth for a given location. The position of 
the sun can be accurately calculated due to constant observation by the astron-
omer and improvement in ephemeris calculation by the astrometric researcher. 
The calculation of the time when the sun shadow is facing the Qibla is as fol-
lows. First step, calculate the first auxiliary angle to get the value of the sun’s 
hour angle with the following formula:
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then calculate the second auxiliary angle with the following formula
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After the two auxiliary angles are obtained, then calculate the sun’s hour angle 
using the following provisions:
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add the sun’s hour angle (in hours) by 12 o’clock to get the solar time of Rashdul 
Qibla:

	 R t HMS� �12 _ 	 Equation 6.4

Finally, the Rashdul Qibla time according to local mean time can be obtained 
using the following formula:
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Where θ  is the Qibla direction, as calculated from the previous chapter. TZ 
is Time Zone of the location. δ  is sun declination. EoT  is Equation of Time. 
The formula of Equation of Time is complex and time consuming.

EQUATION OF TIME

The Equation of Time explains the difference between:

•	 Solar Time – time based on the sun’s actual position in the sky (what 
a sundial shows)

•	 Clock Time – time shown by regular clocks (mean time)

This difference can be up to ±16 minutes. It changes every day of the year.

•	 Solar noon (when the sun is at its highest point) is not always exactly 
at 12:00 PM.

•	 The Equation of Time helps explain why the sun sometimes appears 
early or late.

TWO CAUSES OF THE DIFFERENCE

	 1.	Earth’s orbit is elliptical
•	 Earth moves faster when close to the sun (January)
•	 Earth moves slower when farther (July)

	 2.	Earth’s axis is tilted
•	 The tilt (23.44°) changes the sun’s path across the sky through-

out the year

WHY DOES IT MATTER?

•	 Astronomy – correcting solar positions
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•	 Sundials – to adjust for real sun time
•	 Islamic Prayer Times – calculating accurate Zuhur and other solar-

based times
•	 Navigation – aligning maps and sun angles

SIMPLE DEFINITION

Equation of Time is equal to Solar time minus clock time. If EoT is positive, 
the sun is behind the clock. If EoT is negative, the sun is ahead of the clock

CALCULATION EQUATION OF TIME

There are several Python libraries that are able to calculate the Equation of 
Time. An example is pvlib. Pvlib requires installation from pip.

    pip install pvlib

Once installed, pvlib only requires information of the day of the year. For 
example, to calculate the Equation of Time on January 14, 2024.

    import pvlib
    from datetime import datetime
    import math
    # define the date
    date = datetime(2024, 1, 14)
    # calculate the day of the year
    day_of_year = date.timetuple().tm_yday

Then, to determine the result of the Equation of Time,

  �  EoT = pvlib​.sola​rposi​tion.​equat​ion_o​f_tim​e_pvc​drom(​
day_o​f_yea​r) / 60

    print(f”Equation of Time on date {date} is {EoT}”)
  �  Equation of Time on date 2024–01–14 00:00:00 is 

−0.14995874998914036

This Equation of Time is in decimal format, to convert as hour, minute, second.

    # To Convert in Degree Form

http://www.pvlib.solarposition.equation_of_time_pvcdrom
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    degrees = int(EoT)
    decimal_part = EoT − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)
  �  # Step 3: Convert the decimal part of minutes to 

seconds
    seconds = round((minutes_total − minutes) * 60)
    print(f”{EoT}° = {degrees}° {minutes}′ {seconds}″”)
    −0.14995874998914036° = 0° −8′ −60″

The result is negative 8 minutes and 60 seconds. This means that the sun posi-
tion is located ahead of the clock.

Exercise 1

Determine the Equation of Time for the date 26 May 2025.
Install the required libraries.

    pip install pvlib

Input the date into Python variables.

    Year = 2025
    Month = 5
    Day = 26

Input the date into the pvlib library

    import pvlib
    from datetime import datetime
    import math
    # define the date
    date = datetime(Year, Month, Day)
    # calculate the day of the year
    day_of_year = date.timetuple().tm_yday

Input compute the EoT.

  �           �EoT = pvlib​.sola​rposi​tion.​equat​ion_o​f_tim​
e_pvc​drom(​day_o​f_yea​r) / 60

  �  print(f”Equation of Time on date {date} is {EoT}”)

http://www.pvlib.solarposition.equation_of_time_pvcdrom
http://www.pvlib.solarposition.equation_of_time_pvcdrom
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  �  Equation of Time on date 2025–05–26 00:00:00 is 
0.05194889980865643

Convert to hour.

    # To Convert in Degree Form
    degrees = int(EoT)
    decimal_part = EoT − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)
  �  # Step 3: Convert the decimal part of minutes to 

seconds
    seconds = round((minutes_total − minutes) * 60)
    print(f”{EoT}° = {degrees}° {minutes}′ {seconds}″”)
    0.05194889980865643° = 0° 3′ 7″

The Equation of Time during 26 May 2025 is 3 minutes 7 second positive.

SUN DECLINATION

The sun declination can be calculated using the Skyfield Library. First, the 
Skyfield library needs to be installed.

    pip install skyfield

Skyfield requires some information to operate; it requires general import 
of which Skyfield function the user want to use; the ephemeris, observation 
object, location of the user. First, the general import of the Skyfield function. 
For this case, we want to use the load function, to load ephemeris data and N, 
S, W, E to load geographical direction data, and wgs84 to load earth geographi-
cal location data. In Python this is written as,

    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84

Next, from the load function, determine which ephemeris and target that is 
going to be used. In this case, ephemeris 440s is used due to its small size 
and accuracy. Observation target is earth and sun, since this calculation only 
involves these two objects. In Python this is written as

http://www.skyfield.api
http://www.skyfield.api
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    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

Then, Skyfield requires location input to calculate the sun position. Let’s say 
we calculate from the position of Kuala Lumpur, Malaysia, with coordinates of 
3.1319° N, 101.6841° E, during the date of 14 October 2025.

    name_city = “Kuala Lumpur”
    lat_location = 3.1319
    long_location = 101.6841
    year = 2025
    month = 10
    day = 14

Next is to give the information to Skyfield user location. In this case, the user 
is from earth and calculation is computed on lat_location and long_location 
coordinates.

  �  kuala_lumpur = earth + wgs84​.latl​on(lat_location, 
long_location, elevation_m=0)

Then, input the date of the calculated observation, from the computed position 
to the targeted position. The computed position is kuala_lumpur, while the 
targeted position is sun. The code, written in Python as

  �  astro = kuala​_lumpur​​.at(ts​.u​tc(year, month, day)).
observe(sun)

astro means that the input is in astrometric position of the sun. To convert into 
apparent position, as observed by the observer at kuala_lumpur, is;

    app = astro.apparent()

From this app data, we can calculate the right ascension, declination, and dis-
tance of the sun, as observed from earth. To determine the declination of the 
sun using Skyfield.

    app = astro.apparent()
    ra_dec,dec_app,d_app = app​.rad​ec()
    print(dec_app)
    −08deg 01’ 18.7”

Declination of the sun at Kuala Lumpur on 14 October 2025 is −08° 01’ 18.7”.

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.kuala_lumpur.at
http://www.ts.utc
http://www.app.radec
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Exercise 2

Determine sun declination at Cape Town South Africa, during 26 May 2025, 
where it has a time zone of UTC/GMT +2 hours.

Install skyfield library

    pip install skyfield

Import Necessary Function

    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84

Load Ephemeris Data and Planet Objects

    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

Insert the variable

    #insert the variable
    name_city = “Cape Town”
    lat_location = −33.9221
    long_location = 18.4231
    year = 2025
    month = 5
    day = 26
    tz = 2

Determine the sun declination

  �  kuala_lumpur = earth + wgs84​.latl​on(lat_location, 
long_location, elevation_m=0)

  �  astro = kuala​_lumpur​​.at(ts​.u​tc(year, month, day)).
observe(sun)

    app = astro.apparent()
    app = astro.apparent()
    ra_dec,dec_app,d_app = app​.rad​ec()
    print(dec_app)
    +21deg 04’ 00.3”

Declination of the sun at Cape Town South Africa, on 26 May 2025 is +21° 
04’ 00.3’’.

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.kuala_lumpur.at
http://www.ts.utc
http://www.app.radec
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CALCULATION OF RASHDUL KIBLAT

The calculation of Rashdul Kiblat involve calculating the Equation of Time 
and Sun Declination and the formula from 9 to 13. Using the previous exam-
ple, on 26 May 2025, at Cape Town, where the Equation of Time is 0° 3′ 7″ and 
the sun declination is +21° 04’ 00.3”, we can determine the time when the sun 
shadow facing the Qibla direction.

First, determine the Qibla direction from the previous chapter coding.
Qibla Direction Coding

    # Qibla Direction Calculation
    φ_Location = −33.9221
    λ_Location = 18.4231
    φ_Kaabah = 21.4225
    λ_Kaabah = 39.8262
    Difference_Longitude = abs(λ_Location−λ_Kaabah )

    #Calculation of Qibla Direction
    import math
    A = math.​​s​in(m​ath.r​adian​s(abs​(Diff​erenc​e_Lon​gitud​e)))
    B = �math.​​c​os(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​t​an(m​ath.r​

adian​s(φ_K​aabah​))
    C = �math​.s​in(math.radians(φ_Location)) * math.​​c​os(m​

ath.r​adian​s(Dif​feren​ce_Lo​ngitu​de))
    D = A/(B−C)
    θ = math.degrees(math​.at​an(D))

    #Determine the Azimuth of the Qibla
    if Difference_Longitude > 180:
        delta_λ = 360 − Difference_Longitude
    else:
        delta_λ = Difference_Longitude

    if θ > 0:
       if λ_Location > λ_Kaabah:
           quadrant = “UB” # Utara Barat
       elif λ_Location <= λ_Kaabah:
           quadrant = “UT” # Utara Timur
       elif λ_Location < 0:
           if c >= 180:
               quadrant = “UB”
           else:
               quadrant = “UT”

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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    elif θ < 0:
       if λ_Location > λ_Kaabah:
           quadrant = “SB” # Selatan Barat
       elif λ_Location <= λ_Kaabah:
            quadrant = “ST” # Selatan Timur
       elif λ_Location < 0:
           if c >= 180:
               quadrant = “SB”
           else:
               quadrant = “ST”

    if quadrant == “UB”:
       azimuth_kiblat = 360 − θ
    elif quadrant == “SB”:
       azimuth_kiblat = 180 − θ
    elif quadrant == “UT”:
       azimuth_kiblat = θ
    elif quadrant == “ST”:
       azimuth_kiblat = 180 + θ
    print(azimuth_kiblat)
       23.354225930229862

The Qibla azimuth in Cape Town is 23.354225930229862.
To calculate Rashdul Qibla, from formula 9, determining U using Python 

code is written as

  �  U = math.degrees(math​.at​an(1 / (math​.t​an(math.
radians(-azimuth_kiblat)) * math​.s​in(math.
radians(φ_Location)))))

    print(U)
    76.45187800936165

Sun declination, from previous coding is extracted from the variable dec_app. 
This is in degree format and cannot be included in computation. To express the 
sun declination in decimal format and make it computable, the code is

    dec_app.degrees

Next, the value of T_U can be calculated using Equation 6.2 from sun declina-
tion and U variable. In Python this is written as,

  �  T_U = math.​degre​es(ma​​th​.ac​​​os(ma​​th​.t​a​n(mat​h.rad​ians(​
dec_a​pp.de​grees​)) * math​.c​os(math.radians(U)) / math​.t​
an(math.radians(lat_location))))

    print(T_U)
    97.71100015734693

http://www.math.atan
http://www.math.tan
http://www.math.sin
http://www.math.degrees
http://www.math.acos
http://www.math.tan
http://www.math.radians
http://www.dec_app.degrees
http://www.dec_app.degrees
http://www.math.cos
http://www.math.tan
http://www.math.tan
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After the T_U value is obtained, calculate the sun’s hour angle ( tHMS ) using 
Equation 6.3 using Python;

    if U > 0:
       t_HMS = (-abs(T_U) + U) / 15
    else:
       t_HMS = (abs(T_U) + U) / 15
    print(t_HMS)
    −1.4172748098656853

The Rashdul Qibla time, R in solar time, is obtained using Equation 6.4, and 
is expressed in Python as

    R = 12 + t_HMS
    print(R)
    10.582725190134315

The value of R is in solar time. To change the direction of Qibla in solar time 
to local time, use Equation 6.5. Equation 6.5 requires data from time zone, I, 
and Equation of Time, EoT. In Python this is written as,

    if tz > 0:
        �Rashdul_Kiblat = R − EoT + (tz * 15 − long_

location) / 15
    else:
       �Rashdul_Kiblat = R − EoT + (abs(tz * 15) − 

abs(long_location)) / 15
       print(Rashdul_Kiblat)
       11.302569623658991

The answer is in decimal. To convert to hour minute format,

    # To Convert in Degree Form
    degrees = int(Rashdul_Kiblat)
    decimal_part = Rashdul_Kiblat − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)
  �  # Step 3: Convert the decimal part of minutes to 

seconds
    seconds = round((minutes_total − minutes) * 60)
    print(f”{degrees}° {minutes}′ {seconds}″”)
    11° 18′ 9″

Rashdul Kiblat will occur, or The shadow of the sun, will point toward Qibla 
direction at 11:18 AM on 25 May 2025. At Cape Town South Africa.
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Exercise 3

Determine the time of Rashdul Kiblat of Oslo in Norway, which has geograph-
ical latitude of 59.913333 North and 10.738889 East on July 30, 2025, that has 
Time zone UTC+1. The Qaabah geographical latitude is 21.4225 Noth, longi-
tude is 39.8262 East.

Determine the Qibla direction

    # Qibla Direction Calculation
    φ_Location = 59.913333
    λ_Location = 10.738889
    φ_Kaabah = 21.4225
    λ_Kaabah = 39.8262
    Difference_Longitude = abs(λ_Location−λ_Kaabah )

    #Calculation of Qibla Direction
    import math

    A = math.​​s​in(m​ath.r​adian​s(abs​(Diff​erenc​e_Lon​gitud​e)))
    B = �math.​​c​os(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​t​an(m​ath.r​

adian​s(φ_K​aabah​))
    C = �math​.s​in(math.radians(φ_Location)) * math.​​c​os(m​

ath.r​adian​s(Dif​feren​ce_Lo​ngitu​de))
    D = A/(B−C)
    θ = math.degrees(math​.at​an(D))

    #Determine the Azimuth of the Qibla
    if Difference_Longitude > 180:
        delta_λ = 360 − Difference_Longitude
    else:
        delta_λ = Difference_Longitude

    if θ > 0:
       if λ_Location > λ_Kaabah:
           quadrant = “UB” # Utara Barat
       elif λ_Location <= λ_Kaabah:
           quadrant = “UT” # Utara Timur
       elif λ_Location < 0:
           if c >= 180:
               quadrant = “UB”
           else:
               quadrant = “UT”
    elif θ < 0:
       if λ_Location > λ_Kaabah:
           quadrant = “SB” # Selatan Barat

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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       elif λ_Location <= λ_Kaabah:
           quadrant = “ST” # Selatan Timur
       elif λ_Location < 0:
           if c >= 180:
               quadrant = “SB”
           else:
               quadrant = “ST”

    if quadrant == “UB”:
        azimuth_kiblat = 360 − θ
    elif quadrant == “SB”:
        azimuth_kiblat = 180 − θ
    elif quadrant == “UT”:
        azimuth_kiblat = θ
    elif quadrant == “ST”:
        azimuth_kiblat = 180 + θ
    print(azimuth_kiblat)
    139.01065227776655

The qibla direction is 139.01. Then, determine the Equation of Time. Install 
pvlib first.

    pip install pvlib

Then run the code,

    import pvlib
    from datetime import datetime
    import math

    Year = 2025
    Month = 7
    Day = 30

    # define the date
    date = datetime(Year, Month, Day)

    # calculate the day of the year
    day_of_year = date.timetuple().tm_yday
  �  EoT = pvlib​.sola​rposi​tion.​equat​ion_o​f_tim​e_pvc​drom(​

day_o​f_yea​r) / 60

    print(f”Equation of Time on date {date} is {EoT}”)
  �  Equation of Time on date 2025–07–30 00:00:00 is 

−0.10191142861300423

http://www.pvlib.solarposition.equation_of_time_pvcdrom
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The Equation of Tme is −0.1019, then determine the solar declination. Install 
skyfield first.

pip install skyfield

then run the code to calculate Sun Declination

    #Determine the Sun Declination
    #Import Necessary Function
    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84
    #Load Ephemeris Data and Planet Objects
    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

    #insert the variable
    name_city = “Oslo “
    lat_location = 59.913333
    long_location = 10.738889
    year = 2025
    month = 7
    day = 30
    tz = 1
  �  location = earth + wgs84​.latl​on(lat_location, long_

location, elevation_m=0)
  �  astro = location​.​at(ts​.u​tc(year, month, day)).

observe(sun)
    app = astro.apparent()
    app = astro.apparent()
    ra_dec,dec_app,d_app = app​.rad​ec()
    print(dec_app)
    +18deg 34’ 49.6”

Determine the time of Rashdul Kiblat

    # Rashdul Qiblat Computation
    U = �math.degrees(math​.at​an(1 / (math​.t​an(math.

radians(−azimuth_kiblat)) * math​.s​in(math.
radians(φ_Location)))))

    T_U = �math.​degre​es(ma​​th​.ac​​​os(ma​​th​.t​a​n(mat​h.rad​ians(​
dec_a​pp.de​grees​)) * math​.c​os(math.radians(U)) / 
math​.t​an(math.radians(lat_location))))

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.location.at
http://www.ts.utc
http://www.app.radec
http://www.math.atan
http://www.math.tan
http://www.math.sin
http://www.math.degrees
http://www.math.acos
http://www.math.tan
http://www.math.radians
http://www.dec_app.degrees
http://www.dec_app.degrees
http://www.math.cos
http://www.math.tan
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    if U > 0:
       t_HMS = (−abs(T_U) + U) / 15
    else:
       t_HMS = (abs(T_U) + U) / 15
    R=12+t_HMS
    if tz > 0:
        �Rashdul_Kiblat = R − EoT + (tz * 15 − long_

location) / 15
    else:
       �Rashdul_Kiblat = R − EoT + (abs(tz * 15) − 

abs(long_location)) / 15
    # To Convert in Degree Form
    degrees = int(Rashdul_Kiblat)
    decimal_part = Rashdul_Kiblat − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)
  �  # Step 3: Convert the decimal part of minutes to 

seconds
    seconds = round((minutes_total − minutes) * 60)
    print(f”{degrees}° {minutes}′ {seconds}″”)
    10° 22′ 17″

Rashdul Qiblat occurs at 10:22:17 in Osla on July 30, 2025.

Exercise 4

Use the Python program you’ve made to calculate the Rashdul Qibla for the city 
of Washington, DC, in the USA that has geographical latitude of 38.904722 
North and geographical longitude of 77.016389 West on March 25, 2025, that 
has Time zone UTC-5.

Exercise 5

Use the Python program you’ve made to calculate the Rashdul Qibla for the city 
of Johannesburg in South Africa that has geographical latitude of 26.204444 
South and geographical longitude of 28.045556 East on November 3, 2025, 
that has Time zone UTC+2.
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7Prayer Times 
Calculation

Prayer time calculation is based on the position of the sun. Each country has 
different methods of prayer time calculation. In Malaysia, the prayer time is 
calculated based on tabular extrapolation on the position of the solar, its hour 
angle, and Equation of Time.

The tabular extrapolation means that the calculation requires manual com-
putation and cannot be automated for yearly determinations. Therefore, the 
calculation of prayer times in this does not use tabular extrapolation; instead, 
it is extracted directly from the sun’s position, using the Skyfield library.

ZUHUR

The earliest time for Zuhr begins after solar noon, when the sun passes the 
local meridian and reaches its highest point in the sky. It is based on Prophet 
saying:

The time for Zuhr is when the sun has passed its zenith 
until a person’s shadow is equal in length to his height.

Sahih Muslim (612)

The earliest time for Zuhr (Dhuhr) prayer begins just after the sun passes its 
zenith, known as the solar transit. To ensure the sun has fully crossed the 
meridian and begun its descent, an offset equal to half of the sun’s appar-
ent diameter is applied. This corresponds to approximately 1 minute and 4 
seconds.

Using the Skyfield library in Python, the solar daily transit time can be 
accurately calculated based on the actual position of the sun. This method does 
not require the Equation of Time, as Skyfield already accounts for the sun’s 
apparent motion and Earth’s orbital variations. To calculate the Zuhr prayer 

Python for Islamic Astronomy Prayer Times Calculation
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Prayer Times Calculation

time. First, we need the corresponding location and date. For this case, we 
use London coordinates, which are 51.5072 North, 0.1276° West, time zone of 
GMT+1, during the date of 28 May 2025. Then, we need to import function 
that are needed for the calculation.

    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84
    from skyfield import almanac

The import almanac is added since the function to find solar transit is located 
under the function almanac.

Put input into the variable

    latitude = 51.5072
    longitude = −0.1276
    timezone = 1
    day = 28
    month = 5
    year = 2025

Load ephemeris.

    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

Feed info of user location

  �  location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

Skyfield require range of calculate date. If we want to locate the time of the 
transit between 29 May 2025 to 30 May 2025, this is written as;

    t0 = ts.​u​tc(year, month, day)
    t1 = ts.​u​tc(year, month, day + 1)

Then, to find the time of solar transit

    t = almanac.find_transits(location, sun, t0, t1)
    print(t)
         <Time tt=[2460823.99928731]>

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
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The result is in Julian Day Number. The extract hour, minute and seconds of 
solar transit from

    hour_solar_transit = t​.utc​.h​our
    minutes_solar_transit = t​.utc​.min​ute
    second_solar_transit = t​.utc​.sec​ond

    print(hour_solar_transit)
    print(minutes_solar_transit )
    print(second_solar_transit)
    [11.]
    [57.]
    [49.23954726]

This means that solar transit will occur at 11:57:49. However, this is not time-
zone corrected. In addition, the Zuhur will occur at 1 minute 4 seconds after 
solar transit, which is 0.017778 in hour. Therefore, to make the correction 
based on actual Zuhur time.

  �  zuhur_time = hour_solar_transit + (minutes_solar_
transit / 60) + (second_solar_transit / 3600 ) + 
timezone + 0.017778

    print(zuhur_time)
    [12.98145565]

This means that after timezone and 1 minute 4 seconds correction, the Zuhr 
time is [12.98145565]. This is not in time format; to convert into time format:

    # To Convert in Degree Form
    degrees = int(zuhur_time )
    decimal_part = float(zuhur_time) − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)

    seconds = round((minutes_total − minutes) * 60)

  �  sun_astro = location​.​at(ts​.u​tc(year, month, day, 
hour_solar_transit, minutes_solar_transit, second_
solar_transit)).observe(sun)

    sun_alt, _, _ = sun_astro.apparent().altaz()

    # Check if the sun is above the horizon at Zuhr time
    if sun_alt.degrees <= 0:
        zuhur = “Zuhur Does Not Occur”
    else:

http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
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        �zuhur = f”Zuhur Occurs at {degrees}° {minutes}′ 
{seconds}″”

    print(zuhur)
    Zuhur Occurs at 12° 58′ 53″

This means that the zuhur prayer time at 51.5072 North, 0.1276° West, time 
zone of GMT+1, during the date of 28 May 2025 occurs at 12:58:53. The above 
code include counter measure should the Zuhur be calculated at a location near 
the North or South pole.

Exercise 1

Determine the Zuhr prayer time for Abuja, Nigeria, which is located at coor-
dinates 9.0563° North, 7.4985° East, with a time zone of GMT+1, on the date 
of 1 January 2014.

Install skyfield

    pip install skyfield

Import Necessary Function

    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84
    from skyfield import almanac

Load Ephemeris Data and Planet Objects

    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

Input the Variable

    lat_location = 9.0563
    long_location = 7.4985
    timezone = 1
    day = 1
    month = 1
    year = 2014

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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Input info to location variable

  �  location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

Determine the Range of Data

    t0 = ts​.u​tc(year, month, day)
    t1 = ts​.u​tc(year, month, day + 1)

Find the time of Transit

    t = almanac.find_transits(location, sun, t0, t1)

Extract Hour, Minutes, Seconds

    hour_solar_transit = t​.utc​.h​our
    minutes_solar_transit = t​.utc​.min​ute
    second_solar_transit = t​.utc​.sec​ond

    print(hour_solar_transit)
    print(minutes_solar_transit )
    print(second_solar_transit)

Zuhur Time in decimal

  �  zuhur_time = hour_solar_transit + (minutes_solar_
transit / 60) + (second_solar_transit / 3600 ) + 
timezone + 0.017778

    print(zuhur_time)

Zuhur in Time Format

    degrees = int(zuhur_time )
    decimal_part = zuhur_time − degrees
    minutes_total = decimal_part * 60
    minutes = int(minutes_total)

    seconds = round((minutes_total − minutes) * 60)

  �  sun_astro = location​.​at(ts​.u​tc(year, month, day, 
hour_solar_transit, minutes_solar_transit, second_
solar_transit)).observe(sun)

    sun_alt, _, _ = sun_astro.apparent().altaz()
    # Check if the sun is above the horizon at zuhur time

http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
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    if sun_alt.degrees <= 0:
        zuhur = “Zuhur Does Not Occur”
    else:
       �zuhur = f”Zuhur Occurs at {degrees}° {minutes}′ 

{seconds}″”

    print(zuhur)
    Zuhur occurs at 12° 34′ 37″

This means that Zuhur prayer time at Abuja, Kenya coordinate, which are 
9.0563 North, 7.4985 East, time zone of GMT+1, during the date of 1 January 
2014 will occur at 13:05:08.

Exercise 2

Determine the Zuhr prayer time for Buenos Aires, Argentina, which is located 
at coordinates 34.6037° South, 58.3816° West, with a time zone of GMT−3, on 
the date of 5 November 2023.

Exercise 3

Determine the Zuhr prayer time for Vancouver, Canada, which is located at 
coordinates 49.2827° North, 123.1207° West, with a time zone of GMT−8, on 
the date of 10 September 2020.

ASAR

The beginning of Asar prayer time is based on the length of the sun’s shadow. 
This is based on the prophetic saying;

…Then he prayed Asr when everything was similar (to the length of) its 
shadow…
…Then he prayed Asr when the shadow of everything was about twice as 
long as it…

There are several interpretations for the actual length of shadow for the start 
of the Asar prayer time. First, as adopted by the Asy-Syafie School of Islamic 
Thought, the length of the sun shadow for Asar prayer times is
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	 Asar Shadow Syafie height of a stick� �1 	 Equation 7.1

Or written in Python as

    sun_shadow_asar = 1

because we assume the height of the stick is 1, regardless of the unit. For 
Hanafi School of Islamic Thought, the length of the sun shadow for Asar 
prayer times is

	 Asar Shadow Hanafi height of a stick� �2 	 Equation 7.2

Or written in Python as

    sun_shadow_asar = 2

Other opinion, as adopted by Malaysia, the length of the sun shadow for Asar 
prayer time is

Asar ShadowOthers SunShadow during solar transit height of a sti� �1 cck 	

Equation 7.3

Or written in Python as

    sun_shadow_asar = 1 + sun_shadow_transit

To calculate the prayer time of Asar, we need to calculate the length of the 
sun shadow in a time loop from solar transit until the stipulated length of the 
sun shadow for Asar prayer time. For example, for the London coordinate, 
which are 51.5072 North, 0.1276° West, time zone of GMT+1, during the date 
of 28 May 2025, where the Asar sun shadow is Equation 7.3. First, we need to 
import function that are needed for the calculation.

    from skyfield​.a​pi import load
    from skyfield​.a​pi import N, S, E, W, wgs84
    from skyfield import almanac
    import math

Put input into the variable

    lat_location = 51.5072
    long_location = −0.1276

http://www.skyfield.api
http://www.skyfield.api


﻿7  •  Prayer Times Calculation  55

    timezone = 1
    day = 28
    month = 5
    year = 2025

Load ephemeris.

    ts = load.timescale()
    eph = load(‘de440s​.b​sp’)
    planets = load(‘de440s​.b​sp’)
    earth = planets[‘earth’]
    sun = planets[‘sun’]

Feed info of user location

  �  location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

Skyfield require range of calculate date. If we want to locate the time of the 
transit between 29 May 2025 to 30 May 2025, this is written as;

    t0 = ts.​u​tc(year, month, day)
    t1 = ts.​u​tc(year, month, day + 1)

Then, to find the time of solar transit

    t = almanac.find_transits(location, sun, t0, t1)

After finding the solar transit, determine the position of sun altitude at the time 
of the solar transit

    h, m, s = t.​utc.​hou​r, t.​utc.​minut​e, t.​utc.​sec​ond
  �  sun_astro = location.​​at(ts.​u​tc(year, month, day, 

h, m)).observe(sun)
    sun_app = sun_astro.apparent()
    sun_alt, sun_az, distance = sun​_app.​al​taz()

In the above code, sun_astro is the astrometric position of the sun. The astro-
metric position needs to be converted to apparent position to determine the 
altitude of the sun. Therefore, the code sun_app = sun_astro.apparent() makes 
the conversion from astrometric to apparent position. Then, to determine the 
altitude of the sun, sun_alt, sun_az, distance = sun​_app​.al​taz(), where sun_alt 
is the sun altitude, sun_az is the sun azimuth. distance is the apparent distance 
between the sun and earth.

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.t﻿.﻿utc﻿.﻿second
http://www.location﻿.﻿at
http://www.ts﻿.﻿utc
http://www.sun_app﻿.﻿altaz
http://www.sun_app.altaz
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    print(sun_alt)
    60deg 02’ 14.0”

From the above code, we know that the altitude of the sun is 60° 02’ 14.0”. Then, 
determine the length of the sun shadow during transit, which is written as

  �  sun_shadow_transit = 1/ (math​​.t​an(​math.​radia​ns(su​n_alt​
.degr​ees))​)

    print(sun_shadow_transit)
    0.576484553268423

The result is 0.5764, indicating that at the time of solar transit, the length of 
the sun’s shadow is approximately 57.64% of the stick’s height, assuming the 
stick height is 1. Then to determine the sun shadow has reach the length from 
Equation 7.3.

    sun_shadow_asar = 1 + sun_shadow_transit
    print(sun_shadow_asar)
    1.5764845532684229

At the time of solar transit, the length of the sun’s shadow is approximately 
0.5764, meaning it is only 57.64% of the stick’s height. However, for the Asar 
prayer, the required shadow length is 1.5764, or 157.64% of the stick’s height. 
This indicates that the sun must descend further in the sky before the Asar time 
begins. To accurately determine the time for Asar prayer, a time-based loop 
is implemented starting from the moment of solar transit. This loop checks 
the length of the shadow at each point in time until it reaches the required 
Asar length. To make the process more efficient, the loop is divided into three 
stages: hour loop, minute loop, and second loop, allowing the program to 
incrementally and precisely identify the exact time when the condition is met. 
To develop with hour time loop, with the rule of the loop the sun shadow does 
not pass the length of the Asar sun shadow,

# Start with hour
test = 1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow= 1 / math​.t​an(math.radians(sun_alt.
degrees))

http://www.math.tan
http://www.math.radians
http://www.sun_alt.degrees
http://www.sun_alt.degrees
http://www.location.at
http://www.ts.utc
http://www.math.tan
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if sun_alt.degrees <= 0:
  break
if test > 24:
  break
if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

h += 1
test +=1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at hour {h}’)

Sun Altitude [58.06080941], Sun_Shadow 
0.6233945983146184 at hour [12.]
Sun Altitude [60.03162483], Sun_Shadow 
0.5766145603035456 at hour [13.]
Sun Altitude [57.62354596], Sun_Shadow 
0.6340429848026038 at hour [14.]
Sun Altitude [51.70606881], Sun_Shadow 
0.7895804424162487 at hour [15.]
Sun Altitude [43.7299877], Sun_Shadow 
1.0453443161558726 at hour [16.]
Sun Altitude [34.76344347], Sun_Shadow 
1.4407721100751296 at hour [17.]

From the printed output above, we can see that the Sun’s shadow exceeds the 
required Asar shadow length at hour 17. Therefore, we step back one hour and 
proceed with a minute-level time loop to more precisely determine the exact 
minute when the required shadow length is first reached.

# Once the condition is met for hours, move to minutes
h_asar = h − 1
test=1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 1440:
  break

http://www.location.at
http://www.ts.utc
http://www.math.tan
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if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

m += 1
test +=1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at minute {m}’)

# Increment time in minutes
m_asar = m − 1

Sun Altitude [34.76344347], Sun_Shadow 
1.4407721100751296 at minute 2
Sun Altitude [34.60973771], Sun_Shadow 
1.449055572925344 at minute 3
Sun Altitude [34.45594556], Sun_Shadow 
1.4574083986033666 at minute 4
Sun Altitude [34.30206933], Sun_Shadow 
1.4658314538010262 at minute 5
Sun Altitude [34.14811128], Sun_Shadow 
1.4743256209720872 at minute 6
Sun Altitude [33.99407369], Sun_Shadow 
1.4828917986639925 at minute 7
Sun Altitude [33.8399588], Sun_Shadow 
1.4915309018584026 at minute 8
Sun Altitude [33.68576885], Sun_Shadow 
1.50024386232121 at minute 9
Sun Altitude [33.53150605], Sun_Shadow 
1.5090316289614694 at minute 10
Sun Altitude [33.37717262], Sun_Shadow 
1.517895168199992 at minute 11
Sun Altitude [33.22277074], Sun_Shadow 
1.5268354643482442 at minute 12
Sun Altitude [33.06830259], Sun_Shadow 
1.5358535199970826 at minute 13
Sun Altitude [32.91377034], Sun_Shadow 
1.544950356416044 at minute 14
Sun Altitude [32.75917614], Sun_Shadow 
1.554127013963914 at minute 15
Sun Altitude [32.60452212], Sun_Shadow 
1.5633845525101653 at minute 16
Sun Altitude [32.44981041], Sun_Shadow 
1.5727240518677097 at minute 17

From the printed output above, we can see that the Sun’s shadow exceeds the 
required Asar shadow length at minute 23. Therefore, we step back one minute 
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and proceed with a second-level time loop to more precisely determine the 
exact minute when the required shadow length is first reached.

# Once the condition is met for minutes, move to 
seconds
test=1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m_asar, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 86400:
  break
if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

s += 1
test +=1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at second {s}’)

# Increment time in seconds

s_asar = s

Sun Altitude [32.44981041], Sun_Shadow 
1.5727240518677097 at second 2
Sun Altitude [32.44723141], Sun_Shadow 
1.5728804108174916 at second 3
Sun Altitude [32.44465239], Sun_Shadow 
1.573036792844485 at second 4
Sun Altitude [32.44207335], Sun_Shadow 
1.5731931979536897 at second 5
Sun Altitude [32.4394943], Sun_Shadow 
1.573349626150443 at second 6
Sun Altitude [32.43691523], Sun_Shadow 
1.5735060774396996 at second 7
Sun Altitude [32.43433615], Sun_Shadow 
1.573662551826798 at second 8

http://www.location.at
http://www.ts.utc
http://www.math.tan
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Sun Altitude [32.43175705], Sun_Shadow 
1.5738190493167965 at second 9
Sun Altitude [32.42917794], Sun_Shadow 
1.573975569914748 at second 10
Sun Altitude [32.42659881], Sun_Shadow 
1.5741321136259998 at second 11
Sun Altitude [32.42401967], Sun_Shadow 
1.5742886804555098 at second 12
Sun Altitude [32.42144051], Sun_Shadow 
1.5744452704086311 at second 13
Sun Altitude [32.41886133], Sun_Shadow 
1.5746018834903772 at second 14
Sun Altitude [32.41628214], Sun_Shadow 
1.5747585197059564 at second 15
Sun Altitude [32.41370294], Sun_Shadow 
1.5749151790605282 at second 16
Sun Altitude [32.41112372], Sun_Shadow 
1.5750718615593058 at second 17
Sun Altitude [32.40854448], Sun_Shadow 
1.5752285672074033 at second 18
Sun Altitude [32.40596523], Sun_Shadow 
1.5753852960098962 at second 19
Sun Altitude [32.40338597], Sun_Shadow 
1.5755420479721345 at second 20
Sun Altitude [32.40080668], Sun_Shadow 
1.5756988230991047 at second 21
Sun Altitude [32.39822739], Sun_Shadow 
1.5758556213961656 at second 22
Sun Altitude [32.39564808], Sun_Shadow 
1.5760124428683018 at second 23
Sun Altitude [32.39306875], Sun_Shadow 
1.5761692875208748 at second 24
Sun Altitude [32.39048941], Sun_Shadow 
1.5763261553589674 at second 25
Sun Altitude [32.38791005], Sun_Shadow 
1.5764830463876598 at second 26

From the printed output above, we can see that the sun’s shadow exceeds the 
required Asar shadow length at seconds 26. Therefore, we step back one sec-
ond. The Asar time, after the time loop, with timezone correction is

asar_time = (h_asar + (m_asar) / 60 + s_asar / 3600) + 
timezone
print(asar_time)
[17.27388889]
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This is observed in decimal. To convert to time format.

asar_time = float(asar_time)
degrees = int(asar_time)
decimal_part = asar_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)

seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees <= 0 or test >86400:
asar = “Asar Does Not Occur”

else:
asar = f”Asar Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(asar)
Asar Occurs at 17° 16′ 26″

Therefore, asar prayer time at London, during 28 May 2025, based on Equation 
7.3 occurs at 17:16:26. The second part is a counter measure should the cal-
culated position is near the North or South Pole. Now, use the same London 
coordinate, which are 51.5072 North, 0.1276° West, time zone of GMT+1, dur-
ing the date of 28 May 2025. Determine the prayer time of asar, where the asar 
sun shadow is Equation 7.1. First, we need to import function that are needed 
for the calculation.

from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = 51.5072
long_location = −0.1276
timezone = 1
day = 28
month = 5
year = 2025

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
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planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day)
t1 = ts.​u​tc(year, month, day + 1)

Then, to find the time of solar transit

t = almanac.find_transits(location, sun, t0, t1)

After finding the solar transit, determine the position of sun altitude at the time 
of the solar transit

h, m, s = t.​utc.​hou​r, t.​utc.​minut​e, t.​utc.​sec​ond
sun_astro = observer.​​at(ts.​u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app.​al​taz()
print(sun_alt)
60deg 02’ 14.0”

Then, determine the length of the sun shadow during transit, which is written as

sun_shadow_transit = 1/ (math​​.t​an(​math.​radia​ns(su​n_alt​
.degr​ees))​)
print(sun_shadow_transit)
0.576484553268423

Then to determine the sun shadow has reach the length from Equation 7.1.

sun_shadow_asar = 1

At the time of solar transit, the length of the sun’s shadow is approximately 
0.57, meaning it is only 57% of the stick’s height. However, for the Asar prayer, 
the required shadow length is 1 or 100% of the stick’s height. This indicates 
that the sun must descend further in the sky before the Asar time begins. Write 

http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.t﻿.﻿utc﻿.﻿second
http://www.observer﻿.﻿at
http://www.ts﻿.﻿utc
http://www.sun_app﻿.﻿altaz
http://www.math.tan
http://www.math.radians
http://www.sun_alt.degrees
http://www.sun_alt.degrees
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the hour time loop, with the rule of the loop the sun shadow does not pass the 
length of the afar sun shadow

# Start with hour
test=1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow= 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 24:
  break

if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

h += 1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at hour {h}’)

Proceed with a minute-level time loop to more precisely determine the exact 
minute when the required shadow length is first reached.

# Once the condition is met for hours, move to minutes
h_asar = h − 1
test=1

while True:
# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

http://www.location.at
http://www.ts.utc
http://www.math.tan
http://www.location.at
http://www.ts.utc
http://www.math.tan
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if sun_alt.degrees <= 0:
  break
if test > 1440:
  break

if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

m += 1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at minute {m}’)
# Increment time in minutes

m_asar = m − 1

Proceed with a second-level time loop to more precisely determine the exact 
minute when the required shadow length is first reached.

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m_asar, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))
if sun_alt.degrees <= 0:
  break
if test > 86400:
  break

if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length matches 
or exceeds the desired length
s += 1
print(f’Sun Altitude {sun_alt.degrees}, Sun_Shadow 
{sun_shadow} at second {s}’)

# Increment time in seconds

s_asar = s

http://www.location.at
http://www.ts.utc
http://www.math.tan
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The asar time, after the time loop, with timezone correction is

asar_time = (h_asar + (m_asar) / 60 + s_asar / 3600) + 
timezone
print(asar_time)

This is observed in decimal. To convert to time format.

asar_time = float(asar_time)
degrees = int(asar_time)
decimal_part = asar_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)

seconds = round((minutes_total − minutes) * 60)
if sun_alt.degrees <= 0 or test >86400:
    asar = “Asar Does Not Occur”
else:
    �asar = f”Asar Occurs at {degrees}° {minutes}′ 

{seconds}″”

print(asar)
Asar Occurs at 15° 52′ 6″

Therefore, asar prayer time at London, during 28 May 2025, based on Equation 
7.1 occurs at 15:52:06. Finally, use the same London coordinate, which are 
51.5072 North, 0.1276° West, time zone of GMT+1, during the date of 28 May 
2025. Determine the prayer time of asar, where the asar sun shadow is Equation 
7.2. Following from the above code, the change is Equation 7.2. Where,

sun_shadow_asar = 2

The hour time loop, with the rule of the loop the sun shadow does not pass the 
length of the afar sun shadow

# Start with hour
test = 1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

http://www.location.at
http://www.ts.utc
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sun_shadow= 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 24:
  break

if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

h += 1

# Once the condition is met for hours, move to minutes
h_asar = h − 1
test=1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 1440:
  break

if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

m += 1

# Increment time in minutes
m_asar = m − 1
test = 1

# Once the condition is met for minutes, move to 
seconds
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m_asar, s)).observe(sun)

http://www.math.tan
http://www.location.at
http://www.ts.utc
http://www.math.tan
http://www.location.at
http://www.ts.utc
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sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
  break
if test > 86400:
  break

if sun_shadow >= sun_shadow_asar:
  �break # Exit the loop if the shadow length matches 
or exceeds the desired length

s += 1

# Increment time in seconds

s_asar = s

The asar time, after the time loop, with timezone correction is

asar_time = (h_asar + (m_asar) / 60 + s_asar / 3600) + 
timezone
print(asar_time)

This is observed in decimal. To convert to time format.

asar_time = float(asar_time)
degrees = int(asar_time)
decimal_part = asar_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
print(f”{degrees}° {minutes}′ {seconds}″”)
17° 53′ 55″

Therefore, asar prayer time at London, during 28 May 2025, based on Equation 
7.2 occurs at 17:53:55.

Exercise 1

Using the coordinates of Cairo, which are 30.0444° North, 31.2357° East, and 
a time zone of GMT+2, determine the Asar prayer time for the date 10 March 
2025.

http://www.math.tan
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Use Equation 14 to compute the shadow length required at Asar.

Exercise 2

Using the coordinates of Kuala Lumpur, which are 3.1390° North, 101.6869° 
East, and a time zone of GMT+8, determine the Asar prayer time for the date 
21 September 2025.

Apply Equation 15 to evaluate the required shadow length for Asar.

Exercise 3

Using the coordinates of New York City, which are 40.7128° North, 74.0060° 
West, and a time zone of GMT−4, determine the Asar prayer time for the date 
August 5, 2025.

Use Equation 16 to find when the shadow length meets the Asar 
requirement.

MAGHRIB

The beginning of Maghrib prayer time is based on the position of the sunset. 
This is based on the prophetic saying;

…Then he prayed Maghrib when the sun had set and the fasting person 
breaks fast.…

The position of the sun must be completely below the horizon to mark the 
beginning of Maghrib prayer. This means that the upper limb of the sun must 
have fully disappeared. However, factors such as atmospheric refraction and 
the observer’s elevation above sea level can affect the apparent position of the 
sun at sunset. These variables must be carefully considered when calculating 
the precise time for Maghrib prayer. The determination of Maghrib prayer 
time is based on the find_settings function. Skyfield uses the official definition 
of sunrise and sunset from the United States Naval Observatory, which defines 
them as the moment when the center of the sun is 50 arcminutes below the 
horizon, to account for both the average solar radius of 16 arcminutes and for 
roughly 34 arcminutes of atmospheric refraction at the horizon. To determine 
the time of the maghrib prayer time, assuming the user is located at Sydney 
Tower Eye, with Latitude 33.8688° South, Longitude 151.2093° East, on 23 
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March 2025, where the timezone in effect is GMT + 11, with elevation of 350 
meter. First, we need to import function that are needed for the calculation.

from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = −33.8688
long_location = 151.2093
timezone = 11
day = 23
month = 3
year = 2025
ele = 350

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day)
t1 = ts.​u​tc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units
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side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
print(h,m,s)
[8.] [5.] [28.44139129]

The time of the sunset is 8:05:28.44, at UTC time. To convert into local time 
with GMT + 11.

maghrib_time = float(h + m / 60 + s / 3600 + timezone)
print(maghrib_time)
19.09123372

When calculating prayer times near sunset, there may be instances where the 
computed time exceeds 24 hours. This typically occurs due to the addition of 
the local time zone offset to the base time (often in UTC). To correct this and 
ensure the resulting prayer time remains within a 24-hour format, the follow-
ing code is used to normalize the time

maghrib_time %= 24 # Ensure 24-hour clock format
print(maghrib_time)

From this moment, we can convert into time format,

maghrib_time = float(maghrib_time)
degrees = int(maghrib_time)
decimal_part = maghrib_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, m, 
s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()
if sun_alt.degrees >= 0:

maghrib = “Maghrib Does Not Occur”

http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
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else:
maghrib = f”Maghrib Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(maghrib)
Maghrib Occurs at 19° 5′ 28″

This means that Maghrib at Sydney Tower Eye, with Latitude 33.8688° South, 
Longitude 151.2093° East, on 23 March 2025, where the timezone in effect is 
GMT + 11, with elevation of 350 meter occur at 19:5:28.

Exercise 1

Determine the Maghrib prayer time on 15 July 2025 for a user located at the 
KL Tower, Malaysia, with the following details:

•	 Latitude: 3.1579° North
•	 Longitude: 101.7123° East
•	 Elevation: 300 meters
•	 Time Zone: GMT +8

Exercise 2

Calculate the Maghrib prayer time for Cairo, Egypt on 10 October 2025, with 
the following coordinates:

•	 Latitude: 30.0444° North
•	 Longitude: 31.2357° East
•	 Elevation: 75 meters
•	 Time Zone: GMT +2

Exercise 3

On 1 January 2025, determine the time of Maghrib prayer for a user located at 
the Empire State Building, New York, USA:

•	 Latitude: 40.7484° North
•	 Longitude: 73.9857° West
•	 Elevation: 381 meters
•	 Time Zone: GMT −5 (Standard Time, no DST)
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Exercise 4

Compute the Maghrib prayer time for a location in Makkah, Saudi Arabia, on 
28 May 2025:

•	 Latitude: 21.4225° North
•	 Longitude: 39.8262° East
•	 Elevation: 277 meters
•	 Time Zone: GMT +3

ISYA’

The beginning of Isya’ prayer time is based on the position of the sky condition 
after sunset. This is based on the prophetic saying;

…Then he prayed Isha when the twilight had vanished.…

The disappearance of twilight from the sky is caused by the sun’s continued 
descent below the horizon after sunset. At a certain angle, known as the solar 
depression angle, the sun’s rays are no longer refracted by the atmosphere in a 
way that illuminates the night sky. When this critical angle is reached, the sky 
becomes completely dark, marking the beginning of the ‘Isha (Isya’) prayer time. 
However, Islamic scholars differ in their opinions regarding the exact degree 
of solar depression that signifies the start of ‘Isha. While many adopt angles 
between 15° and 18° below the horizon, there is no unanimous agreement, and 
various regions apply different standards based on jurisprudential reasoning and 
observational studies. To determine the Isya’ prayer time, at Bangkok where 
Latitude 13.7563° North, Longitude 100.5018° East and Time Zone GMT+7, 
with elevation of 150 meter on 16 June 2025 for 18 degrees of solar depression 
during Isya’. First, we need to import function that are needed for the calculation.

from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = 13.7563
long_location = 100.5018

http://www.skyfield.api
http://www.skyfield.api
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timezone = 7
day = 16
month = 6
year = 2025
ele = 150

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day)
t1 = ts.​u​tc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
print(h,m,s)
[11.] [48.] [36.56323494]

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
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Since the ‘Isha (Isya’) prayer occurs after sunset, it is necessary to perform a 
time-based loop starting from the moment of sunset and continuing until the 
solar altitude reaches 18 degrees of solar depression. The time loop operation 
is similar with the previous asar prayer time loop operation. First determine 
the solar altitude,

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_alt)
−01deg 06’ 01.2”

To develop with hour time loop, with the rule of the loop the solar degree does 
not pass the altitude of – 18.

# Start with hour
test=1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
isha_angle = 18
elevation_correction = 0.0293 * math​.sq​rt(ele)
isha_angle_actual = −isha_angle − elevation_correction

if sun_alt.degrees >= 0:
  break
if test > 24:
  break

if sun_alt.degrees <= isha_angle_actual:
  �break # Exit the loop if the solar altitude 
located below −18 degree

print(f’Sun Altitude {sun_alt.degrees}, at hour 
{h}’)
h += 1
test += 1

Sun Altitude [−1.23504713], at hour [11.]
Sun Altitude [−14.26400679], at hour [12.]

In the above code, if sun_alt.degrees <= isha_angle_actual: is used to deter-
mine whether the solar altitude has reach below 18 degree of depression. In 

http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.location.at
http://www.ts.utc
http://www.math.sqrt
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this example, the elevation factor is considered for high-altitude locations. 
When calculating prayer times, particularly for Isha and Fajr, the position of 
the sun below the horizon is critical. Typically, the angle used for Isha is when 
the sun is 18 degrees below the horizon. However, this standard angle is based 
on observations made at sea level.

At higher elevations, the situation changes due to the geometry of the 
Earth and the observer’s horizon. When a person is located on a mountain 
or at a high-altitude location, their view of the sky is broader, and they are 
physically above a portion of the atmosphere. As a result, the sun appears to 
set faster, and darkness arrives sooner compared to someone at sea level. To 
accurately reflect this earlier onset of night, the Isha angle must be adjusted 
slightly downward, meaning a larger depression angle. This is why we include 
an elevation correction factor in the calculation. The correction is often cal-
culated using the formula:

	 elevationcorrection elevation in meters� ��� �0 0293. 	 Equation 7.4

This value is subtracted from the standard Isha angle (e.g., −18°), giving a 
slightly steeper actual angle for high-altitude locations. For instance, at 4000 
meters elevation, the correction might be around 1.85 degrees, so the adjusted 
angle becomes approximately −19.85 degrees. This adjustment ensures that 
the calculated Isha time matches the true observable darkness experienced by 
someone at that elevation. Without applying this correction, the prayer time 
would be inaccurately delayed, especially in mountainous regions. From the 
output, the sun altitude reach angle below −18 degrees at hour 12. Then pro-
ceed with a minute-level time loop to more precisely determine the exact min-
ute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h_isya = h − 1
test=1

while True:
# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
  break
if test > 1440:
  break

http://www.location.at
http://www.ts.utc
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if sun_alt.degrees <= isha_angle_actual:
  �break # Exit the loop if the solar altitude 
located below −18 degree

m += 1
print(f’Sun Altitude {sun_alt.degrees}, at minute 
{m}’)

# Increment time in minutes
m_isya = m – 1
Sun Altitude [−14.26400679], at minute [49.]
Sun Altitude [−14.47642833], at minute [50.]
Sun Altitude [−14.68866518], at minute [51.]
Sun Altitude [−14.90071568], at minute [52.]
Sun Altitude [−15.11257813], at minute [53.]
Sun Altitude [−15.32425085], at minute [54.]
Sun Altitude [−15.53573212], at minute [55.]
Sun Altitude [−15.74702021], at minute [56.]
Sun Altitude [−15.95811338], at minute [57.]
Sun Altitude [−16.16900984], at minute [58.]
Sun Altitude [−16.37970783], at minute [59.]
Sun Altitude [−16.59020554], at minute [60.]
Sun Altitude [−16.80050114], at minute [61.]
Sun Altitude [−17.0105928], at minute [62.]
Sun Altitude [−17.22047865], at minute [63.]
Sun Altitude [−17.43015683], at minute [64.]
Sun Altitude [−17.63962543], at minute [65.]
Sun Altitude [−17.84888254], at minute [66.]
Sun Altitude [−18.05792617], at minute [67.]
Sun Altitude [−18.26675447], at minute [68.]

From the printed output above, we can see that the sun altitude reaches below 
the required Isya’ depression degree at minute 68. Therefore, we step back one 
minute and proceed with a second-level time loop to more precisely determine 
the exact minute when the required Isya’ depression degree is first reached.

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m_isya, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

http://www.location.at
http://www.ts.utc
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if sun_alt.degrees >= 0:
  break
if test > 86400:
  break

if sun_alt.degrees <= isha_angle_actual:
  �break # Exit the loop if the solar altitude 
located below −18 degree

s += 1
print(f’Sun Altitude {sun_alt.degrees}, at second 
{s}’)

# Increment time in seconds

s_isya = s

Sun Altitude [−18.26675447], at second [37.56323494]
Sun Altitude [−18.2702331], at second [38.56323494]
Sun Altitude [−18.27371168], at second [39.56323494]
Sun Altitude [−18.27719019], at second [40.56323494]
Sun Altitude [−18.28066865], at second [41.56323494]
Sun Altitude [−18.28414704], at second [42.56323494]
Sun Altitude [−18.28762538], at second [43.56323494]
Sun Altitude [−18.29110365], at second [44.56323494]
Sun Altitude [−18.29458186], at second [45.56323494]
Sun Altitude [−18.29806001], at second [46.56323494]
Sun Altitude [−18.30153811], at second [47.56323494]
Sun Altitude [−18.30501614], at second [48.56323494]
Sun Altitude [−18.30849411], at second [49.56323494]
Sun Altitude [−18.31197202], at second [50.56323494]
Sun Altitude [−18.31544987], at second [51.56323494]
Sun Altitude [−18.31892766], at second [52.56323494]
Sun Altitude [−18.32240539], at second [53.56323494]
Sun Altitude [−18.32588306], at second [54.56323494]
Sun Altitude [−18.32936066], at second [55.56323494]
Sun Altitude [−18.33283821], at second [56.56323494]
Sun Altitude [−18.3363157], at second [57.56323494]
Sun Altitude [−18.33979312], at second [58.56323494]
Sun Altitude [−18.34327049], at second [59.56323494]
Sun Altitude [−18.34674779], at second [60.56323494]
Sun Altitude [−18.35022504], at second [61.56323494]
Sun Altitude [−18.35370222], at second [62.56323494]
Sun Altitude [−18.35717935], at second [63.56323494]
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From the printed output above, we can see that the solar altitude exceeds the 
required Isya’ Solar Depression at second 63. Therefore, we step back one sec-
ond. The Isya’ time, after the time loop, with timezone correction is

isya_time = (h_isya + (m_isya) / 60 + s_isya / 
3600)+timezone
print(isya_time)
[20.13444444]

To correct this and ensure the resulting prayer time remains within a 24-hour 
format,

isya_time %= 24 # Ensure 24-hour clock format
print(isya_time)

To convert into time format,

isya_time = float(isya_time)
degrees = int(isya_time)
decimal_part = isya_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
    isya = “Isya’ Does Not Occur”
else:
    �isya = f”Isya’ Occurs at {degrees}° {minutes}′ 

{seconds}″”

print(isya)
Isya’ Occurs at 20° 8′ 4″

Isya prayer time at Bangkok where Latitude 13.7563° North, Longitude 
100.5018° East and Time Zone GMT+7, with elevation of 150 meter on 16 June 
2025 for 18 degree of solar depression is Isya’ is at 20:08:04.

Exercise 1

Determine the ‘Isya prayer time at Jakarta, Indonesia, where Latitude: 6.2088° 
South, Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, 
Date: 21 July 2025, Assume ‘Isya begins at a solar depression of −17°.

First, we need to import function that are needed for the calculation.
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from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = −6.2088
long_location = 106.8456
timezone = 7
day = 21
month = 7
year = 2025
ele = 50

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day)
t1 = ts.​u​tc(year, month, day + 1)

Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units
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r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Then, determine the time of the sunset

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
print(h,m,s)
[10.] [54.] [23.66874027]

Since the ‘Isha (Isya’) prayer occurs after sunset, it is necessary to perform a 
time-based loop starting from the moment of sunset and continuing until the 
solar altitude reaches 18 degrees of solar depression. The time loop operation 
is similar with the previous asar prayer time loop operation. First determine 
the solar altitude,

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_alt)
−00deg 58’ 37.5”

To develop with hour time loop, with the rule of the loop the solar degree does 
not pass the altitude of – 17.

# Start with hour

test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h+1, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
isha_angle = 17
elevation_correction = 0.0293 * math​.sq​rt(ele)
isha_angle_actual = −isha_angle − elevation_correction

if sun_alt.degrees >= 0:
  break
if test > 24:
  break

http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.location.at
http://www.ts.utc
http://www.math.sqrt


﻿7  •  Prayer Times Calculation  81

if sun_alt.degrees <= isha_angle_actual:
  �break # Exit the loop if the solar altitude 
located below −18 degree

h = h + 1

Then proceed with a minute-level time loop to more precisely determine the 
exact minute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h_isya = h − 1
test = 1
while True:
  # Calculate the Solar Altitude
  �sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m, s)).observe(sun)

  �sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

  if sun_alt.degrees >= 0:
    break
  if test > 1440:
    break

if sun_alt.degrees <= isha_angle_actual:
   �break # Exit the loop if the solar altitude 

located below −18 degree
m += 1

# Increment time in minutes
m_isya = m − 1

Proceed with a second-level time loop to more precisely determine the exact 
minute when the required Isya’ depression degree is first reached.

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m_isya, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
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if sun_alt.degrees >= 0:
  break
if test > 86400:
  break

if sun_alt.degrees <= isha_angle_actual:
   �break # Exit the loop if the solar altitude 

located below −18 degree
s += 1
print(f’Sun Altitude {sun_alt.degrees}, {isha_angle_
actual} at second {s}’)

# Increment time in seconds

s_isya = s

Then, we step back one second. The Isya’ time, after the time loop, with time-
zone correction is

isya_time = (h_isya + (m_isya) / 60 + s_isya / 
3600)+timezone
print(isya_time)
[19.05666667]

To correct this and ensure the resulting prayer time remains within a 24-hour 
format,

isya_time %= 24 # Ensure 24-hour clock format
print(isya_time)
[19.05666667]

To convert into time format,

isya_time = float(isya_time)
degrees = int(isya_time)
decimal_part = isya_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
    isya = “Isya’ Does Not Occur”
else:
    �isya = f”Isya’ Occurs at {degrees}° {minutes}′ 

{seconds}″”
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print(isya)
Isya’ Occurs at 19° 3′ 25″

‘Isya prayer time at Jakarta, Indonesia, where Latitude: 6.2088° South, 
Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, Date: 
21 July 2025, Assume ‘Isya begins at a solar depression of −17 is at 19:3:24.

Exercise 2

Determine the ‘Isya prayer time at Istanbul, Turkey, where Latitude: 41.0082° 
North, Longitude: 28.9784° East, Time Zone: GMT+3, Elevation: 40 meters, 
Date: 15 August 2025. Use a solar depression angle of −16° to mark the begin-
ning of ‘Isya prayer.

Exercise 3

Determine the ‘Isya prayer time at Tokyo, Japan, with the following details, 
Latitude: 35.6762° North, Longitude: 139.6503° East, Elevation: 40 meters, 
Time Zone: GMT+9, Date: 16 June 2025. Assume ‘Isya begins when the solar 
depression angle reaches 20° below the horizon.

SYURUK

Syuruk is the end of Subh prayer time. It is based on the timing of the sunrise. 
This originates from the prophetic saying;

…The beginning of the time for Fajr is when Fajr begins, and its end is when 
the sun rises.

Sunrise from the Syuruk is the first visibility of the upper limb of the sun. This 
means that the upper limb of the sun must be fully visible from view. Similarly, 
the Maghrib refraction and elevation factor also need to be considered. To 
determine the time of the Syuruk, assuming the user is located at Sydney 
Tower Eye, with Latitude 33.8688° South, Longitude 151.2093° East, on 23 
March 2025, where the time zone in effect is GMT + 11, with elevation of 350 
meter. First, we need to import function that are needed for the calculation.
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from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = −33.8688
long_location = 151.2093
timezone = 11
day = 23
month = 3
year = 2025
ele = 350

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day-1)
t1 = ts.​u​tc(year, month, day)

Since Syuruk occurs in the morning, we assume the calculation from the day 
before. Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units


﻿7  •  Prayer Times Calculation  85

h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Then, determine the time of the sunrise

t, y = almanac.find_risings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
print(h,m,s)
[19.] [57.] [29.52933632]

The time of the sunset is 19:57:29, at UTC time. To convert into local time with 
GMT + 11.

syuruk_time = float(h + m / 60 + s / 3600 + timezone)
print(syuruk_time)
30.958202593423238

When calculating times near sunrise, there may be instances where the com-
puted time exceeds 24 hours; the above example is the case. To correct this and 
ensure the resulting prayer time remains within a 24-hour format, the follow-
ing code is used to normalize the time

syuruk_time %= 24 # Ensure 24-hour clock format
print(syuruk_time)
6.958202593423238

From this moment, we can convert into time format,

syuruk_time = float(syuruk_time)
degrees = int(syuruk_time)
decimal_part = syuruk_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, m, 
s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()
sun_alt, _, _ = sun_astro.apparent().altaz()
if sun_alt.degrees >= 0:
    syuruk = “Syuruk Does Not Occur”
else:

http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
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    �syuruk = f”Syuruk Occurs at {degrees}° {minutes}′ 
{seconds}”

print(syuruk)
Syuruk Occurs at 6° 57′ 30

This means that syuruk at Sydney Tower Eye, with Latitude 33.8688° South, 
Longitude 151.2093° East, on 23 March 2025, where the timezone in effect is 
GMT + 11, with elevation of 350 meters occurs at 06:57:30.

Exercise 1

Determine the Syuruk (sunrise end) time on 15 July 2025 for a user located in 
central Tokyo, Japan, with the following location details:

•	 Latitude: 35.6762° North
•	 Longitude: 139.6503° East
•	 Elevation: 40 meters
•	 Time Zone: GMT +9

Exercise 2

Calculate the Syuruk time for Cape Town, South Africa, on 10 October 2025.
Use the following coordinates:

•	 Latitude: 33.9249° South
•	 Longitude: 18.4241° East
•	 Elevation: 15 meters
•	 Time Zone: GMT +2

Exercise 3

On 1 January 2025, determine the Syuruk prayer time for a user located in Rio 
de Janeiro, Brazil:

•	 Latitude: 22.9068° South
•	 Longitude: 43.1729° West
•	 Elevation: 5 meters
•	 Time Zone: GMT −3
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Exercise 4

Compute the Syuruk time for Berlin, Germany, on 28 May 2025 using the 
following details:

•	 Latitude: 52.5200° North
•	 Longitude: 13.4050° East
•	 Elevation: 34 meters
•	 Time Zone: GMT +2 (Daylight Saving Time in effect)

SUBH

The beginning of Subh’ prayer time is based on the position of the sky condi-
tion before sunrise. This is based on the prophetic saying.

…Then he prayed Fajr when Fajr (dawn) began…
…then he prayed Subh when the land glowed

The appearance of twilight from the sky is caused by the sun’s continued 
ascent below the horizon before sunrise. At a certain angle, known as the solar 
depression angle, the sun’s rays begin to be refracted by the atmosphere in a 
way that illuminates the night sky. When this critical angle is reached, the first 
dim light appears horizontally in the sky, marking the beginning of the Subh 
prayer time. However, Islamic scholars differ in their opinions regarding the 
exact degree of solar depression that signifies the start of Subh. While many 
adopt angles between 15° and 20° below the horizon, there is no unanimous 
agreement, and various regions apply different standards based on jurispru-
dential reasoning and observational studies. To determine the Subh prayer 
time in Bangkok, where Latitude 13.7563° North, Longitude 100.5018° East 
and Time Zone GMT+7, with elevation of 150 meter on 16 June 2025 for 18 
degrees of solar depression during Subh, we need to import function that are 
needed for the calculation.

from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

http://www.skyfield.api
http://www.skyfield.api
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Put input into the variable

lat_location = 13.7563
long_location = 100.5018
timezone = 7
day = 16
month = 6
year = 2025
ele = 150

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day−1)
t1 = ts.​u​tc(year, month, day)

Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units
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Then, determine the time of the sunrise

t, y = almanac.find_risings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
print(h,m,s)
[22.] [48.] [48.62638382]

Since the Subh prayer occurs before sunrise, it is necessary to perform a time-
based loop starting from the moment of sunrise and backtrack until the solar 
altitude reaches 18 degrees of solar depression. The time loop operation is 
similar with the previous Asar prayer time loop operation. First determine the 
solar altitude,

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_alt)
−01deg 27’ 11.4”

To develop with hour time loop, with the rule of the loop the solar degree does 
not pass the altitude of – 18.

# Start with hour
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
subh_angle = 18
elevation_correction = 0.0293 * math​.sq​rt(ele)
subh_angle_actual = −subh_angle 
− elevation_correction

if sun_alt.degrees >= 0:
  break
if test > 24:
  break

http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.location.at
http://www.ts.utc
http://www.math.sqrt
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if sun_alt.degrees <= subh_angle_actual:
   �break # Exit the loop if the solar altitude 

located below −18 degree
h −= 1
print(f’Sun Altitude {sun_alt.degrees}, at hour 
{h}’)

Sun Altitude [−1.27408764], at hour [21.]
Sun Altitude [−14.3007989], at hour [20.]

In the above code, if sun_alt.degrees <= subh_angle_actual is used to deter-
mine whether the solar altitude has reach below 18 degree of depression. From 
the output, the sun altitude reach angle below −18 degrees at hour 20. Then 
proceed with a minute-level time loop to more precisely determine the exact 
minute when the solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h_subh = h + 1
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
  break
if test > 1440:
  break

if sun_alt.degrees <= subh_angle_actual:
       �break # Exit the loop if the solar altitude 

located below
m −= 1
print(f’Sun Altitude {sun_alt.degrees}, at minute 
{m}’)

# Increment time in minutes
m_subh = m + 1

Sun Altitude [−14.3007989], at minute [47.]
Sun Altitude [−14.51317791], at minute [46.]
Sun Altitude [−14.72537202], at minute [45.]
Sun Altitude [−14.93737954], at minute [44.]

http://www.location.at
http://www.ts.utc
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Sun Altitude [−15.14919881], at minute [43.]
Sun Altitude [−15.36082811], at minute [42.]
Sun Altitude [−15.57226573], at minute [41.]
Sun Altitude [−15.78350995], at minute [40.]
Sun Altitude [−15.994559], at minute [39.]
Sun Altitude [−16.20541111], at minute [38.]
Sun Altitude [−16.41606451], at minute [37.]
Sun Altitude [−16.62651737], at minute [36.]
Sun Altitude [−16.83676789], at minute [35.]
Sun Altitude [−17.04681421], at minute [34.]
Sun Altitude [−17.25665447], at minute [33.]
Sun Altitude [−17.4662868], at minute [32.]
Sun Altitude [−17.67570929], at minute [31.]
Sun Altitude [−17.88492002], at minute [30.]
Sun Altitude [−18.09391709], at minute [29.]
Sun Altitude [−18.30269847], at minute [28.]

From the printed output above, we can see that the sun altitude reaches below 
the required Subh depression degree at minute 28. Therefore, we step back one 
minute and proceed with a second-level time loop to more precisely determine 
the exact minute when the required Subh depression degree is first reached.

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m_subh, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
if sun_alt.degrees >= 0:
  break
if test > 86400:
  break

if sun_alt.degrees <= subh_angle_actual:
       �break # Exit the loop if the solar altitude 

located below
s −= 1
print(f’Sun Altitude {sun_alt.degrees}, at second 
{s}’)

# Increment time in seconds

s_subh = s +1

http://www.location.at
http://www.ts.utc
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Sun Altitude [−18.30269847], at second [47.62638382]
Sun Altitude [−18.30617632], at second [46.62638382]
Sun Altitude [−18.30965412], at second [45.62638382]
Sun Altitude [−18.31313185], at second [44.62638382]
Sun Altitude [−18.31660952], at second [43.62638382]
Sun Altitude [−18.32008713], at second [42.62638382]
Sun Altitude [−18.32356467], at second [41.62638382]
Sun Altitude [−18.32704216], at second [40.62638382]
Sun Altitude [−18.33051959], at second [39.62638382]
Sun Altitude [−18.33399696], at second [38.62638382]
Sun Altitude [−18.33747427], at second [37.62638382]
Sun Altitude [−18.34095151], at second [36.62638382]
Sun Altitude [−18.3444287], at second [35.62638382]
Sun Altitude [−18.34790582], at second [34.62638382]
Sun Altitude [−18.35138289], at second [33.62638382]
Sun Altitude [−18.35485989], at second [32.62638382]
Sun Altitude [−18.35833683], at second [31.62638382]

From the printed output above, we can see that the solar altitude exceeds the 
required Isy’ Solar Depression at second 31. Therefore, we step back one sec-
ond. The Isya’ time, after the time loop, with timezone correction is

subh_time = (h_subh + (m_subh) / 60 + s_subh / 
3600)+timezone
print(subh_time)
[28.4925]

To correct this and ensure the resulting prayer time remains within a 24-hour 
format,

subh_time %= 24 # Ensure 24-hour clock format
print(subh_time)
[4.4925]

To convert into time format,

subh_time = float(subh_time)
degrees = int(subh_time)
decimal_part = subh_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
    subh = “Subuh Does Not Occur”
else:
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    �subh = f”Subuh Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(subh)
Subuh Occurs at 4° 29′ 33″

Subh prayer time at Bangkok where Latitude 13.7563° North, Longitude 
100.5018° East and Time Zone GMT+7, with elevation of 150 meter on 16 June 
2025 for 18 degree of solar depression is at 04:31:16.

Exercise 1

Determine the Subh prayer time at Jakarta, Indonesia, where Latitude: 6.2088° 
South, Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, 
Date: 21 July 2025, Assuming Subh begins at a solar depression of −17°. First, 
we need to import function that are needed for the calculation.

from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

Put input into the variable

lat_location = −6.2088
long_location = 106.8456
timezone = 7
day = 21
month = 7
year = 2025
ele = 50

Load ephemeris.

ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

Feed info of user location

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon


94  Python for Islamic Astronomy﻿

Skyfield require range of calculate date, this is written as;

t0 = ts.​u​tc(year, month, day−1)
t1 = ts.​u​tc(year, month, day)

Then, include the variable of refraction and location elevation

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Then, determine the time of the sunrise

t, y = almanac.find_risings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond

Since the Subh prayer occurs before sunrise, it is necessary to perform a time-
based loop starting from the moment of sunrise and backtrack until the solar 
altitude reaches 17 degrees of solar depression. The time loop operation is 
similar with the previous Asar prayer time loop operation. First determine the 
solar altitude,

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()

To develop with hour time loop, with the rule of the loop the solar degree does 
not pass the altitude of – 17.

# Start with hour

test = 1
while True:

# Calculate the Solar Altitude

http://www.ts﻿.﻿utc
http://www.ts﻿.﻿utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
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sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
subh_angle = 17
elevation_correction = 0.0293 * math​.sq​rt(ele)
subh_angle_actual = −subh_angle 
− elevation_correction
if sun_alt.degrees >= 0:
  break
if test > 24:
  break

if sun_alt.degrees <= subh_angle_actual:
   �break # Exit the loop if the solar altitude 

located below −18 degree
h −= 1

In the above code, if sun_alt.degrees <= subh_angle_actual:is used to deter-
mine whether the solar altitude has reached below, then proceed with a min-
ute-level time loop to more precisely determine the exact minute when the 
solar altitude is first reached.

# Once the condition is met for hours, move to minutes
h_subh = h + 1
test =1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
if sun_alt.degrees >= 0:
  break
if test > 1440:
  break

if sun_alt.degrees <= subh_angle_actual:

   �break # Exit the loop if the solar altitude 
located below −18 degree

m −= 1

# Increment time in minutes
m_subh = m + 1

http://www.location.at
http://www.ts.utc
http://www.math.sqrt
http://www.location.at
http://www.ts.utc
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Then proceed with a second-level time loop to more precisely determine the 
exact minute when the required Subh depression degree is first reached.

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m_subh, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
if sun_alt.degrees >= 0:
  break
if test > 86400:
  break

if sun_alt.degrees <= subh_angle_actual:
   �break # Exit the loop if the solar altitude 

located below −18 degree
s −= 1

# Increment time in seconds

s_subh = s +1

The Isya’ time, after the time loop, with timezone correction is

subh_time = (h_subh + (m_subh) / 60 + s_subh / 
3600)+timezone
print(subh_time)
[28.91295064]

To correct this and ensure the resulting prayer time remains within a 24-hour 
format,

subh_time %= 24 # Ensure 24-hour clock format
print(subh_time)
4.91295064

To convert into time format,

subh_time = float(subh_time)
degrees = int(subh_time)

http://www.location.at
http://www.ts.utc
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decimal_part = subh_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
    subh = “Subuh Does Not Occur”
else:
    �subh = f”Subuh Occurs at {degrees}° {minutes}′ 

{seconds}″”

print(subh)
Subuh Occurs at 4° 54′ 47″

Subh prayer time at Jakarta, Indonesia, where Latitude: 6.2088° South, 
Longitude: 106.8456° East, Time Zone: GMT+7, Elevation: 50 meters, Date: 21 
July 2025, Assuming Subh begins at a solar depression of −17° is at 04:54:47.

Exercise 2

Determine the Subh (Fajr) prayer time at Khartoum, Sudan on 21 July 2025, 
assuming Subh begins when the sun reaches −15° below the horizon. Location 
details:

•	 Latitude: 15.5007° North
•	 Longitude: 32.5599° East
•	 Elevation: 380 meters
•	 Time Zone: GMT+2

Exercise 3

Calculate the Subh prayer time in Manila, Philippines for 21 July 2025, using 
a −19° solar depression angle. Location details:

•	 Latitude: 14.5995° North
•	 Longitude: 120.9842° East
•	 Elevation: 16 meters
•	 Time Zone: GMT+8
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Exercise 4

Compute the Subh prayer time at San Salvador, El Salvador on 21 July 2025, 
based on a −20° solar depression. Location details:

•	 Latitude: 13.6929° North
•	 Longitude: −89.2182° West
•	 Elevation: 658 meters
•	 Time Zone: GMT−6
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8Moonsighting 
Observation Data 
Computation

The determination of new Hijri months is based on the position of the moon 
during 29th day of a Hijri month (Mustapha et al., 2024). Either the new Hijri 
month is determined using moonsighting, astronomical calculations, or lunar 
crescent visibility criteria; knowing the geometric position of the moon is 
vital. In the past, the endeavor to calculate the position of the moon during 
29th day of Hijri month is an arduous task, and only selected person can carry 
out the task. Nowadays, due to the invention of Python programming language 
and extensive libraries, the task of calculating the position of the moon can 
be conducted with a few lines of code. In this case, the task of calculating the 
position of the moon can be calculated using Skyfield.

Let us say, user observation site is Kigali, Rwanda, with Latitude 1.9577° 
South, Longitude: 30.1127° East, Elevation: 1,567 meters and Time Zone: 
GMT+2. Determine the geometrical position of the moon during for the Hijri 
month observation on 27 May 2025. First, install skyfield, and other related 
libraries.

pip install skyfield numpy tabulate

Import-related functions

from skyfield import almanac
from skyfield​.a​pi import Topos,load
from skyfield import api
import numpy as np
from skyfield​.a​pi import N, S, E, W, load, wgs84
from skyfield​.a​pi import Topos, load, 
Angle,GREGORIAN_START
import math

Python for Islamic Astronomy

DOI:  10.1201/9781003649120-8
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http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://dx.doi.org/10.4324/9781003649120-8
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Moonsighting Observation Data 
Computation

from scipy.ndimage import rotate
import calendar
from tabulate import tabulate
from matplotlib.patches import Arc
import matplotlib​.pypl​ot as plt
from matplotlib​.colo​rs import LinearSegmentedColormap
import matplotlib​.ima​ge as mpimg
from matplotlib.offsetbox import OffsetImage, 
AnnotationBbox

Load ephemeris and function

planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]
moon = planets[‘moon’]
h_maghrib = 0
m_maghrib = 0
ts = load.timescale()
eph = api​.lo​ad(‘de440s​.b​sp’)

The moon is loaded since we calculate the position of the moon. h_maghrib = 
0, m_maghrib = 0

is declared to mitigate some issue later. Then, input the related variables.

lat_location = −1.9577
long_location = 30.1127
timezone = 8
year = 2025
month = 3
day = 30
ele = 100

Input the location info and refraction and elevation parameter.

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)
from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction
altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))

http://www.matplotlib.pyplot
http://www.matplotlib.colors
http://www.matplotlib.image
http://www.de440s.bsp
http://www.api.load
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.skyfield.units
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solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

Determine the time of sunset.

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h_sunset, m_sunset, s_sunset = t​.utc​.ho​ur, t​.utc​.minu​
te, t​.utc​.sec​ond

In moonsighting calculations, the sunset time is stored using the variables h_
sunset, m_sunset, s_sunset. This distinction is made to clearly differentiate 
it from the moonset time, which will be calculated separately. Then convert 
sunset time in time format

sunset_time = float(h_sunset + m_sunset / 60 + s_
sunset / 3600 + timezone)
sunset_time %= 24 # Ensure 24-hour clock format
sunset_time = float(sunset_time)
degrees = int(sunset_time)
decimal_part = sunset_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
sunset = f”{degrees}° {minutes}′ {seconds}″”
print(sunset)

18° 7′ 58″

We can combine the result into a variable using an f-string, as shown above. In 
this example, the result is stored in the sunset variable and printed in degree-
minute-second (DMS) format. This corresponds to 18:07:58, which indicates 
the time of sunset. Once the sunset time is determined, we can proceed to 
calculate the moonset time, which will follow a similar method.

t, y = almanac.find_settings(location, moon, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h_moonset, m_moonset, s_moonset = t​.utc​.ho​ur, t​.utc​
.minu​te, t​.utc​.sec​ond

Note the changes from sun to moon in comparison to the previous code. This 
is because the previous code is to calculate the sun position, while this code is 
used to calculate the moon position. Then convert moonset time in time format

http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.minute,
http://www.t.utc.second
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moonset_time = float(h_moonset + m_moonset / 60 + 
s_moonset / 3600 + timezone)
moonset_time %= 24 # Ensure 24-hour clock format
moonset_time = float(moonset_time)
degrees = int(moonset_time)
decimal_part = moonset_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
moonset = f”{degrees}° {minutes}′ {seconds}″”
print(moonset)
19° 4′ 59″

Therefore, the moonset occurs at 19:04:59. Then the value of lag time, the dif-
ference of time between moonset and sunset, can be extracted.

lag_time = abs(moonset_time − sunset_time)
print(lag_time)
0.9504272807035683

To calculate lag time, subtract moonset_time and sunset_time. Then make 
sure the result is always positive; use the function abs() inside the subtraction 
operation. The result is in decimal format; to convert into time format,

degrees = int(lag_time)
decimal_part = lag_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
lagtime= f”{degrees}° {minutes}′ {seconds}″”
print(lagtime)
0° 57′ 2″

The lag time between moonset and sunset is 57 minute and 2 seconds. Next is 
to determine the geometrical position of the moon. The geometrical position 
of the moon is calculated using a topocentric reference. This means that the 
position of the moon is calculated in reflect to the user position on the surface 
of the Earth. The calculation is conducted based on the position of the moon 
during sunset. To perform the calculation, first we calculate the altitude of the 
moon during sunset.

moon_astro = location​.​at(ts​.u​tc(year, month, day, 
h_sunset, m_sunset)).observe(moon)

http://www.location.at
http://www.ts.utc


﻿8  •  Moonsighting Observation Data Computation  103

moon_app = moon_astro.apparent()
moon_alt, moon_az, distance = moon​_app​.al​taz()
print(moon_alt)
12deg 27’ 16.3”

The code structure used to calculate moonset is like the code for calculating 
prayer times, such as sunset. The only difference lies in the celestial object 
being observed, the sun for prayer times, and the moon for moonsighting. In 
this case, the same variables as h_sunset and m_sunset can be reused for deter-
mining the moon’s position during sunset. The moon altitude during sunset 
is 12 deg 27’ 16.3”. This format is readable for humans but not suitable for 
numerical calculations. To perform further computations, like determining 
moon visibility, we need the altitude in decimal degrees. To do this, simply 
access the .degrees attribute of the moon_alt variable:

p​rint(​moon_​alt.d​egree​s)
[12.4545324]

The next important parameter for new moon sighting is arc of vision. The arc 
of vision is the altitude difference between the sun’s altitude and moon’s alti-
tude. First, determine the sun’s altitude during sunset.

sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_sunset, m_sunset)).observe(moon)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_alt.degrees)
[−0.92325118]

Next, the difference between sun-moon altitude or Arc of Vision,

arc_of_vision = abs(moon_alt.degrees − sun_alt.
degrees)
print(arc_of_vision)
[13.37778358]

The arc of vision is 13.3778358. Next is the arc of light. The arc of light is the 
angle of separation between sun and moon, or the elongation angle. The arc of 
light can be determined with code,

arc_of_light = sun_app.separation_from(moon_app)
print(arc_of_light.degrees)
[16.57460685]

http://www.moon_app.altaz
http://www.moon_alt.degrees
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
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The arc of light is 13.3778358. Next is the difference in azimuth. The differ-
ence in azimuth is the azimuthal difference between sun azimuth and moon 
azimuth. The code to determine the difference in azimuth is as follows

​diffe​rence​_azim​uth = 
abs(moon_az.degrees-sun_az.degrees)
print(difference_azimuth)
[9.85833904]

The difference in azimuth between the sun and the moon is 9.85833904°. The 
final parameter to consider is the moon age, which refers to the elapsed time 
between the moment of conjunction (new moon) and the sunset at the obser-
vation location. This age is a crucial factor in evaluating the likelihood of 
crescent visibility. To determine moon age, first determine the Julian date of 
the sunset time,

t, y = almanac.find_settings(location, moon, t0, t1, 
horizon_degrees=−r + h.degrees - solar_radius_degrees)
jd_sunset = t.tt

jd_sunset= jd_sunset[0]
print(jd_sunset)
2460760.037716627

The code is similar with find sunset code, however the output is changed to t.tt, 
as it is in Julian date format. Next, determine the time of moon conjunction 
using almanac function,

t0 = ts​.u​tc((year), (month), (day-5))
t1 = ts​.u​tc((year), (month), (day+5))
f = almanac.oppositions_conjunctions(eph, eph[‘Moon’])
t, y = almanac.find_discrete(t0, t1, f)

for ti, yi in zip(t, y):
if yi == 1:

jd_moon_conjuction = format(ti​.​tt)
else:

None
jd_moon_conjuction= float(jd_moon_conjuction)

The time of moon conjunction is computed using almanac.oppositions_con-
junctions function. This function can determine the timing of conjunction 

http://www.ts.utc
http://www.ts.utc
http://www.ti.tt
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or opposition, with yi == 1 for conjunction, and yi == 0 for moon opposi-
tion or full moon. −5 and +5 is performed at t0 and t1 since the conjunc-
tion usually takes a 0 to a few days before the moon observation. Then, 
the moon age is computed as the Julian date difference between sunset and 
moon conjunction.

moonage = (jd_sunset -jd_moon_conjuction)*24
print(moonage)

There! We got the geometric position of the moon during observation.

Exercise 1

An observer in Istanbul, Turkey, located at 41.0082° North latitude and 
28.9784° East longitude, at an elevation of 39 meters and under the GMT+3 
time zone, intends to sight the new moon that would indicate the beginning of 
the month of Shawal. The observation is to be made on 29 March 2025, which 
corresponds to the 29th day of Ramadan 1446H. Determine the geometrical 
position of the moon during this date and time.

Exercise 2

In Cape Town, South Africa, an observer situated at 33.9249° South latitude 
and 18.4241° East longitude, at an elevation of 15 meters and within the GMT+2 
time zone, will attempt to observe the crescent moon on 6 June 2025. This date 
aligns with the 29th day of Zulkaedah 1446H and is critical for determining 
the beginning of the month of Zulhijjah. Calculate the geometrical position of 
the moon at this location and date.

Exercise 3

Assume a user in Jakarta, Indonesia, with coordinates of 6.2088° South lati-
tude and 106.8456° East longitude, observes the moon from an elevation of 
50 meters above sea level. The local time zone is GMT+7. The observation is 
planned for 29 March 2025, corresponding to 29 Ramadhan 1446H. The task 
is to determine the geometrical position of the moon for Shawwal crescent 
sighting on that evening.
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Exercise 4

In Los Angeles, USA, an observer located at 34.0522° North latitude and 
118.2437° West longitude, at an elevation of 71 meters and within the GMT−7 
time zone, intends to observe the moon on 6 June 2025. This corresponds to 
the 29th day of Zulkaedah 1446H. Determine the geometrical position of the 
moon during sunset at this location to evaluate the possibility of crescent sight-
ing for Zulhijjah.



107

9Qiblah Compass 
Visualization

The determination of Rashdul Kiblat is universally suitable for all days in a 
year. There are times when the Rashdul Kiblat is not applicable for a particular 
day or time. This is due to the solar position. Therefore, another alternative is 
to determine the Qibla is based on the degree of solar azimuth. So, to create 
the visualization of the Qibla compass, it must be based on the solar azimuth 
degree. The solar azimuth degree can be calculated using Skyfield, while the 
Qibla direction can be calculated using the previous formula; therefore, the 
angle between the solar azimuth degree and Qibla direction can be determined 
using the subtraction between the solar azimuth degree and Qibla direction 
degree. This angle of subtraction can be visualized.

Visualization of the angle between the sun azimuth and the direction of 
the Qibla can be determined using matplotlib function of polar plot. Matplotlib 
is a visualization function that is embedded with Python. Matplotlib can be 
used to create bar graphs, line graph, and many more graphs. Matplotlib can 
visualize the angle of difference between solar azimuth and Qibla direction 
using polar plot. Polar plot is plot of magnitude |G(jω)H(jω)| versus phase 
angle ∠(G(jω)H(jω)) in polar coordinates, and the value of frequency i.e. ω is 
varied from 0 to ∞. In polar plot magnitude of transfer function is plotted to 
distance from origin and phase angle is plotted from positive real x-axis. Polar 
plot is used in Nyquist plot to determine the stability of closed loop control 
system from its open loop frequency response. The polar plot has the angle 
scale from 0 degree to 360 degree. This would be perfect for the determination 
of Qibla direction from the position of the solar azimuth.

Python for Islamic Astronomy
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Qiblah Compass Visualization

QIBLA DIRECTION VISUALIZATION 
ON POLAR PLOT

The instruction to use Polar Plots for Qibla direction visualization in Python is

fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
where
fig: The figure object, which is the overall container 
for the plot.
ax: The axes object, which represents the polar 
subplot.
subplot_kw={‘projection’: ‘polar’}: Configures the 
axes to have a polar projection. The output for the 
code
import matplotlib.​pypl​ot as plt
# Create the polar plot
fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))

This code will output as shown in Figure 9.1. ​
Notice that the direction of 0 degree start from the right side of the com-

pass. To rearrange the polar plot, with 0 degree located at the forward/upside 
of the compass, the code is

import matplotlib.​pypl​ot as plt
# Create the polar plot
fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
ax.set_theta_direction(−1) # Set clockwise direction
ax.set_theta_zero_location(‘N’) # Set 0° to the top 
(North)

Where ax.set_theha_zero_location (‘N’) will set the top as the starting loca-
tion for the compass, which is the North. While ax.set_theta_direction(−1), 
will set the direction of the compass to be in clockwise direction, following the 
actual compass direction.

The direction of the Qibla follows the previous Qibla equation; let’s say 
the direction of the Qibla is 291. In the code, this can be expressed as

qibla_direction_deg = 291

http://www.matplotlib﻿.﻿pyplot
http://www.matplotlib﻿.﻿pyplot
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The direction of the Qibla in the polar plot is read in radians form; therefore, 
to convert into radians form, the code is expressed as

qibla_direction_rad = np.deg2rad(qibla_direction_deg)

this will convert the angle degree to radians form. After that, to visualize the 
Qibla direction in the polar plot, the code is as follows

ax.​pl​ot([0, qibla_direction_rad], [0, 1], label=‘Qibla 
Direction’, color=‘blue’, linewidth=2)

where,

ax​.plo​t:

FIGURE 9.1  Generic polar plot.

http://www.ax﻿.﻿plot
http://www.ax.plot:
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This is a method to plot data on the specified axes (ax), in this case, a polar 
axis created earlier.

Arguments: [0, qibla_direction_rad] and [0, 1]:

•	 [0, qibla_direction_rad]: This is the radial angle data in radians. The 
line starts at 0 radians (the center) and extends to qibla_direction_
rad, which represents the direction of the Qibla in polar coordinates.

•	 [0, 1]: This is the radius data. The line starts at a radius of 0 (the 
center) and extends outward to a radius of 1.

label=‘Qibla Direction’:

•	 This provides a label for the line, which can be displayed in a legend 
if added to the plot.

color=‘blue’:

•	 Sets the color of the line to blue.

linewidth=2:

•	 Specifies the thickness of the line as 2 units.

The output for this code is shown in Figure 9.2. ​

Exercise 1: Visualize a Qibla Direction 
Using Location Latitude of 39.12 North, 
and Longitude of 80.11 East

First, determine the Qibla direction. To do this, first we insert the variable 
required for the calculation.

φ_Location = 39.12
λ_Location = 80.11
φ_Kaabah = 21.4225
λ_Kaabah = 39.8262
Difference_Longitude = abs(λ_Location−λ_Kaabah)
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Then, we performed the calculation.

#Calculation of Qibla Direction
import math

A = math.​​s​in(m​ath.r​adian​s(abs​(Diff​erenc​e_Lon​gitud​e)))
B = �math.​​c​os(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​t​an(m​ath.r​

adian​s(φ_K​aabah​))
C = �math​.s​in(math.radians(φ_Location)) * math.​​c​os(m​

ath.r​adian​s(Dif​feren​ce_Lo​ngitu​de))
D = A/(B−C)
θ = math.degrees(math​.at​an(D))

#Determine the Azimuth of the Qibla
if Difference_Longitude > 180:

delta_λ = 360 − Difference_Longitude

FIGURE 9.2  Polar plot with Qibla location.

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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else:
delta_λ = Difference_Longitude

if θ > 0:
if λ_Location > λ_Kaabah:

quadrant = “UB” # Utara Barat
elif λ_Location <= λ_Kaabah:

quadrant = “UT” # Utara Timur
elif λ_Location < 0:

if c >= 180:
quadrant = “UB”

else:
quadrant = “UT”

elif θ < 0:
if λ_Location > λ_Kaabah:

quadrant = “SB” # Selatan Barat
elif λ_Location <= λ_Kaabah:

quadrant = “ST” # Selatan Timur
elif λ_Location < 0:

if c >= 180:
quadrant = “SB”

else:
quadrant = “ST”

if quadrant == “UB”:
azimuth_kiblat = 360 − θ

elif quadrant == “SB”:
azimuth_kiblat = 180 − θ

elif quadrant == “UT”:
azimuth_kiblat = θ

elif quadrant == “ST”:
azimuth_kiblat = 180 + θ

# To Convert in Degree Form

degrees = int(azimuth_kiblat)
decimal_part = azimuth_kiblat − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
print(f’The azimuth of the Qibla for Location with 
coordinate {φ_Location} Latitude, {λ_Location} 
Longitude, is {degrees}° {minutes}′ {seconds}″’)
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The azimuth of the Qibla for Location with coordinate 
39.12 Latitude, 80.11 Longitude, is 254° 41′ 48″

The Qibla direction for the given location is 254° 41′ 48″. Next, is to create the 
polar plot. First, create an empty polar plot.

import matplotlib​.pypl​ot as plt
import numpy as np
fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))

The above code will result in an empty polar plot. And then, to align the top of 
the polar plot as North, or 0 degree.

import matplotlib​.pypl​ot as plt
import numpy as np

fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
ax.set_theta_direction(−1) # Set clockwise rotation
ax.set_theta_zero_location(‘N’) # Set 0° (North) at 
the top

Ok now, the top of the polar plot is 0 degree, similar with the alignment that we 
usually found on magnetic compass. Then is to label the Qibla direction based 
on the Qibla direction calculated before.

import matplotlib​.pypl​ot as plt
import numpy as np

fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
ax.set_theta_direction(−1) # Set clockwise rotation
ax.set_theta_zero_location(‘N’) # Set 0° (North) at 
the top

# Convert Qibla direction to radians for plotting
qibla_direction_rad = np.deg2rad(azimuth_kiblat)
ax​.pl​ot([0, qibla_direction_rad], [0, 1], label= 
f’Qibla: {azimuth_kiblat:.2f}°’, color=‘blue’, 
linewidth=2)

This will label the Qibla direction (Figure 9.3). ​

http://www.matplotlib.pyplot
http://www.matplotlib.pyplot
http://www.matplotlib.pyplot
http://www.ax.plot
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SUN AZIMUTH VISUALIZATION 
ON POLAR PLOT

After the Qibla direction can be computed and visualized in the polar plot, 
now it is for the solar azimuth computation. The solar azimuth computation 
can be performed using Skyfield. To calculate the sun azimuth at any given 
time and location, is as follows:

from skyfield.​a​pi import load
from skyfield.​a​pi import N,S,E,W, wgs84
location = earth + wgs84.​latl​on(location_latitud * N, 
location_longitud * E, elevation_m=0)
ts = load.timescale()

FIGURE 9.3  Polar plot with Qibla direction.

http://www.skyfield﻿.﻿api
http://www.skyfield﻿.﻿api
http://www.wgs84﻿.﻿latlon
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eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]
astro = location.​​at(ts.​u​tc(year, month, day, 
hour-timezone,minute)).observe(sun)
sun_app = astro.apparent()
sun_alt, sun_az, = sun​_app.​al​taz()

Explanation of Each Line

from skyfield​.a​pi import load:

•	 Imports the load function from the skyfield​.a​pi module.
•	 The load function is used to fetch data files (e.g., timescales, ephem-

eris files) necessary for astronomical computations.

from skyfield​.a​pi import N, S, E, W, wgs84:

•	 Imports the constants N, S, E, W (representing the cardinal direc-
tions: North, South, East, and West) and the wgs84 object from the 
skyfield​.a​pi module.

•	 wgs84 is a geodetic model used for Earth-related computations, 
such as converting latitudes and longitudes to 3D coordinates.

ts = load.timescale():

•	 Loads a timescale object, which is used to work with time in 
Skyfield.

•	 The timescale object provides methods to define and manipulate 
time (e.g., UTC, TT).

eph = load(‘de421​.b​sp’):

•	 Loads the JPL (Jet Propulsion Laboratory) DE421 ephemeris file. 
This file contains precise positions and velocities for celestial bodies 
in the solar system.

•	 ‘de421​.b​sp’ is a binary file that Skyfield uses to compute positions of 
planets and other bodies.

http://www.de440s.bsp
http://www.de440s.bsp
http://www.location﻿.﻿at
http://www.ts﻿.﻿utc
http://www.sun_app﻿.﻿altaz
http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.de421.bsp
http://www.de421.bsp
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planets = load(‘de421​.b​sp’):

•	 This line is redundant (repeats the loading of ‘de421​.b​sp’) but essen-
tially assigns the same ephemeris data to a new variable planet.

•	 It’s commonly done to improve code readability (e.g., distinguishing 
between different use cases for the same data file).

earth = planets[‘earth’]:

•	 Extracts the Earth object from the ephemeris data. This object allows 
calculations involving Earth’s position, including observer locations.

sun = planets[‘sun’]:

•	 Extracts the sun object from the ephemeris data. This object can be 
used to calculate the sun’s position relative to Earth or other bodies.

location = earth + wgs84.​latl​on(location_latitud * N, location_longitud * E, 
elevation_m=0)

Earth:

•	 Represents the Earth in the solar system as defined by the loaded 
ephemeris (de421​.b​sp).

•	 This object is used as the base reference for observer locations.

wgs84​.latl​on(location_latitud * N, location_longitud * E, 
elevation_m=0):

•	 A geodetic model representing Earth’s shape (latitude, longitude, 
elevation).

•	 Converts the geographical coordinates into a 3D position in space 
relative to Earth’s center.

location_latitud * N:

•	 Multiplies the latitude value (location_latitud) by N (North), ensur-
ing it’s interpreted as a northern hemisphere coordinate. If in the 
southern hemisphere, you’d use S instead.

location_longitud * E:

•	 Multiplies the longitude value (location_longitud) by E (East). If in 
the western hemisphere, you’d use W.

http://www.de421.bsp
http://www.de421.bsp
http://www.wgs84﻿.﻿latlon
http://www.de421.bsp
http://www.wgs84.latlon
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elevation_m=0:

•	 Specifies the elevation (in meters) of the location. Here, it is set to 0, 
which corresponds to sea level.

earth + ...:

•	 Combines the Earth’s position in the solar system with the observ-
er’s location on Earth. The resulting location object represents a 
specific point on Earth as it moves through space.

astro = location.​​at(ts.​u​tc(year, month, day, hour,minu
te)).observe(sun)

location​.​at(ts​.u​tc(year, month, day, hour, minute)):

•	 Computes the position of the specified location on Earth at the given 
UTC time.

•	 ts​.u​tc(year, month, day, hour, minute): Defines the time in 
Coordinated Universal Time (UTC).

•	 This step determines where the Earth (and hence the observer) is in 
space at that moment.

.observe(sun):

•	 Calculates the apparent position of the sun as seen from the loca-
tion at the specified time.

•	 Considers the relative positions of the observer, Earth, and sun.

sun_app = astro.apparent()

astro.apparent():

•	 Converts the geometric position of the sun (as computed by astro) 
into its apparent position by:

	 1.	 Accounting for light-time delay: The sun’s observed position 
includes the time it takes for light to travel from the sun to the 
observer.

	 2.	 Including aberration of light: Adjusts for the motion of the 
Earth while observing the sun.

http://www.location﻿.﻿at
http://www.ts﻿.﻿utc
http://www.location.at
http://www.ts.utc
http://www.ts.utc
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sun_app:

•	 This variable now contains the sun’s apparent position as seen by 
the observer, accounting for these effects.

sun_alt, sun_az, sun_distance = sun​_app​.al​taz()

Explanation of the Outputs:

sun_alt (Altitude):

•	 The angular height of the sun above or below the horizon (in 
degrees).

•	 Positive values: The sun is above the horizon.
•	 Zero: The sun is on the horizon (sunrise or sunset).
•	 Negative values: The sun is below the horizon (nighttime).

sun_az (Azimuth):

•	 The compass direction to the sun (in degrees).
•	 Measured clockwise from North:

•	 0° = North
•	 90° = East
•	 180° = South
•	 270° = West

sun_distance (Distance):

The distance to the sun from the observer’s location, measured in 
Astronomical Units (AU).

1 AU ≈ 149.6 million kilometers, which is the average Earth-sun distance.

Exercise 2: Calculate the Solar Azimuth 
at the Latitude of 39.12 North, and 
Longitude of 80.11 East, in 6+ Timezone, 
on 13 April 2024, during 15:34

First, determine the sun azimuth. The initial step is to input the required 
variable.

http://www.sun_app.altaz
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import math
from skyfield​.a​pi import load, N, E, wgs84 # Skyfield 
for astronomical calculations
import calendar # For handling dates and times

lat_location = 39.12
long_location = 80.11
timezone = 6
year = 2025
month = 4
day = 13
ele = 100

The idea is that the user can use the position of the sun to determine the direc-
tion of the Qibla without requiring timing of the Rashdul Qibla. We can use 
any time of the day when the sun is located above the horizon. For this case, 
we use the position of sun azimuth at 15:34. To input the variable for hour and 
minute,

hour = 15
minute = 34

And then, to determine the sun azimuth

# Load planetary ephemeris data (precise astronomical 
positions)
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)

# Get Earth and Sun objects from the ephemeris
earth = planets[‘earth’]
sun = planets[‘sun’]

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

# Create timescale object and set observation time
ts = load.timescale()
t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
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sun_astro = location​.​at(ts​.u​tc(year, month, day, 
hour-timezone, minute)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_az.degrees)

From the sun azimuth, we can visualize the sun azimuth using the polar plot.

import matplotlib​.pypl​ot as plt
import numpy as np

# Create polar plot (compass-style visualization)
fig, ax = plt.subplots(

subplot_kw={‘projection’: ‘polar’}, # Polar 
coordinate system
figsize=(8, 8)              # 8x8 inch figure

)

# Configure polar plot:
ax.set_theta_direction(−1)       �# Clockwise rotation 

(standard for compass 
bearings)

ax.set_theta_zero_location(‘N’)  # 0° at top (North)

# Convert sun direction from degrees to radians for 
plotting
sun_direction_rad = np.deg2rad(sun_az.degrees)

# Plot a line from center (0,0) to edge (1) in sun’s 
direction
ax​.pl​ot(

[0, sun_direction_rad],       # Angle in radians
[0, 1],                # Distance from center
label=f’Sun Az: {sun_az.degrees:.2f}°’,    �# Legend 

label
color=‘orange’,           # Color of line
linewidth=2               # Line thickness

)

# Display the plot
plt​.sh​ow()

This results as shown in Figure 9.4. ​

http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.matplotlib.pyplot
http://www.ax.plot
http://www.plt.show
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SUN AZIMUTH AND QIBLA DIRECTION 
VISUALIZATION ON POLAR PLOT

Now, let’s combine polar plot for Qibla direction and sun azimuth.

Exercise 3: Visualize Qibla Direction and 
the Solar Azimuth on 13 April 2024, during 
15:34, Using Location Latitude of 39.12 
North, and Longitude of 80.11 East

The sun azimuth and Qibla direction visualization can be combined when both 
visualization codes are run on the same command console. First, run the Qibla 
direction calculation code.

FIGURE 9.4  Polar plot with sun azimuth direction.
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φ_Location = 39.12
λ_Location = 80.11
φ_Kaabah = 21.4225
λ_Kaabah = 39.8262
Difference_Longitude = abs(λ_Location−λ_Kaabah)

#Calculation of Qibla Direction
import math

A = math.​​s​in(m​ath.r​adian​s(abs​(Diff​erenc​e_Lon​gitud​e)))
B = �math.​​c​os(m​ath.r​adian​s(φ_L​ocati​on))*​math.​​t​an(m​ath.r​

adian​s(φ_K​aabah​))
C = �math​.s​in(math.radians(φ_Location)) * math.​​c​os(m​

ath.r​adian​s(Dif​feren​ce_Lo​ngitu​de))
D = A/(B−C)
θ = math.degrees(math​.at​an(D))

#Determine the Azimuth of the Qibla
if Difference_Longitude > 180:

delta_λ = 360 − Difference_Longitude
else:

delta_λ = Difference_Longitude

if θ > 0:
if λ_Location > λ_Kaabah:

quadrant = “UB” # Utara Barat
elif λ_Location <= λ_Kaabah:

quadrant = “UT” # Utara Timur
elif λ_Location < 0:

if c >= 180:
quadrant = “UB”

else:
quadrant = “UT”

elif θ < 0:
if λ_Location > λ_Kaabah:

quadrant = “SB” # Selatan Barat
elif λ_Location <= λ_Kaabah:

quadrant = “ST” # Selatan Timur
elif λ_Location < 0:

if c >= 180:
quadrant = “SB”

else:
quadrant = “ST”

if quadrant == “UB”:
azimuth_kiblat = 360 − θ

http://www.math.sin
http://www.math.radians
http://www.math.cos
http://www.math.radians
http://www.math.tan
http://www.math.radians
http://www.math.radians
http://www.math.sin
http://www.math.cos
http://www.math.radians
http://www.math.radians
http://www.math.atan
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elif quadrant == “SB”:
azimuth_kiblat = 180 − θ

elif quadrant == “UT”:
azimuth_kiblat = θ

elif quadrant == “ST”:
azimuth_kiblat = 180 + θ

# To Convert in Degree Form

degrees = int(azimuth_kiblat)
decimal_part = azimuth_kiblat − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)
print(f’The azimuth of the Qibla for Location with 
coordinate {φ_Location} Latitude, {λ_Location} 
Longitude, is {degrees}° {minutes}′ {seconds}″’)

Then the Sun Azimuth code

# Import required libraries
import math
from skyfield​.a​pi import load, N, E, wgs84 # Skyfield 
for astronomical calculations
import calendar # For handling dates and times

lat_location = 39.12
long_location = 80.11
timezone = 6
year = 2025
month = 4
day = 13
ele = 100

hour = 15
minute = 34

# Load planetary ephemeris data (precise astronomical 
positions)
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)

# Get Earth and Sun objects from the ephemeris
earth = planets[‘earth’]
sun = planets[‘sun’]

http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

# Create timescale object and set observation time
ts = load.timescale()
t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

sun_astro = location​.​at(ts​.u​tc(year, month, day, 
hour-timezone, minute)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
print(sun_az.degrees)

Then run the combination of the visualization code. The combination code 
requires two important variables, sun azimuth as sun_az.degrees, and Qibla 
Direction as azimuth_kiblat.

import matplotlib​.pypl​ot as plt
import numpy as np

fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
ax.set_theta_direction(−1)
ax.set_theta_zero_location(‘N’)

# Plot Qibla Direction (blue line)
qibla_direction_rad = np.deg2rad(azimuth_kiblat)
ax​.pl​ot([0, qibla_direction_rad], [0, 1], label= 
f’Qibla: {azimuth_kiblat:.2f}°’, color=‘blue’, 
linewidth=2)

# Plot Sun Azimuth (orange line)
sun_direction_rad = np.deg2rad(sun_az.degrees)
# Plot a line from center (0,0) to edge (1) in sun’s 
direction
ax​.pl​ot(

[0, sun_direction_rad],       # Angle in radians
[0, 1], 		     # Distance from center
label=f’Sun Az: {sun_az.degrees:.2f}°’,     �# Legend 

label
color=‘orange’,            # Color of line
linewidth=2                # Line thickness

)

http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.matplotlib.pyplot
http://www.ax.plot
http://www.ax.plot
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The resulting code generates a compass displaying both the Sun’s azimuth and 
the Qibla direction. However, it currently lacks labels to help users interpret 
the visualization. To enhance its usability, the visual output should be updated 
with clear, descriptive labels.

import matplotlib​.pypl​ot as plt
import numpy as np

fig, ax = plt.subplots(subplot_kw={‘projection’: 
‘polar’}, figsize=(8, 8))
ax.set_theta_direction(−1)
ax.set_theta_zero_location(‘N’)

# Plot Qibla Direction (blue line)
qibla_direction_rad = np.deg2rad(azimuth_kiblat)
ax​.pl​ot([0, qibla_direction_rad], [0, 1], label= 
f’Qibla: {azimuth_kiblat:.2f}°’, color=‘blue’, 
linewidth=2)

# Plot Sun Azimuth (orange line)
sun_direction_rad = np.deg2rad(sun_az.degrees)
# Plot a line from center (0,0) to edge (1) in sun’s 
direction
ax​.pl​ot(

[0, sun_direction_rad],[0, 1],label=f’Sun 
Az: {sun_az.degrees:.2f}°’, 
color=‘orange’,linewidth=2

)

plt​.tit​le(f’Visualization of Qibla and Sun Azimuth\
nLat: {lat_location}° | Long: {long_location}° \n{day} 
{month} {year}, {hour}:{minute} Local Time\n’, pad=20)
plt​.lege​nd(loc=‘upper right’)
plt​.sh​ow() ​

Figure 9.5 shows a polar plot; it’s like a compass that shows two important 
directions: where the Qibla is (marked by the dashed line) and where the sun 
is at a particular time (shown with the dashed and dotted line). Right above the 
plot, you’ll see the exact location it’s based on, with the latitude and longitude, 
as well as the local date and time. That information is important because the 
direction of both the Qibla and the sun changes depending on where you are 
and what time it is.

Now, if you look around the circle, you’ll notice numbers like 0°, 90°, 
180°, and 270°. These represent directions: 0° is North, 90° is East, 180° is 

http://www.matplotlib.pyplot
http://www.ax.plot
http://www.ax.plot
http://www.plt.title
http://www.plt.legend
http://www.plt.show
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South, and 270° is West. So, imagine this as if you’re standing inside a com-
pass, and each degree tells you which way you’re facing.

To use this, start by focusing on the blue line; that’s the Qibla direction for 
your location. It tells you the exact angle you need to face to pray toward the 
Kaaba in Makkah. If you have a compass or a compass app on your phone, just 
rotate yourself until you’re aligned with that degree. That’s your Qibla.

Now here’s where it gets even more helpful, notice the orange line? That 
shows where the sun is at the given time. If you’re outdoors and the sun is vis-
ible, you can use its position to help you find the Qibla without needing a com-
pass. One simple way is to use something like a water bottle or any object that 
stands upright. Place it on a flat surface and observe where its shadow falls. 
The shadow will point directly away from the sun’s direction.

FIGURE 9.5  Polar plot of the sun azimuth and Qibla direction.
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Now, look at the diagram again and find the orange line; that’s the sun’s 
azimuth. Then compare it to the blue line, which shows the Qibla direction. 
The angle between these two lines tells you how much you need to rotate from 
the sun’s position to face the Qibla. For example, if the Qibla is to the left of the 
sun’s position on the plot, you would turn your body that same amount to the 
left from the shadow’s direction. This way, the shadow becomes your guide, 
and with just a bottle and this plot, you can figure out the Qibla direction even 
without technology. Pretty handy, right?

So, in short, this plot helps you see both where the Qibla is and where the 
sun is at a specific time, which can be useful, especially when you don’t have 
a digital compass handy but can see the sun.

Exercise 4

Visualize the Qibla direction and the solar azimuth on August 17, 2025, at 
14:40 local time, for a location with latitude 36.74° South and longitude 71.06° 
West (near Chillán, Chile). The location has an elevation of 150 meters above 
sea level, and the local timezone is UTC−4 (Chile Standard Time). Use this 
information to generate a polar plot showing both the direction of the Qibla 
and the azimuth of the sun at that moment.

Exercise 5

Visualize the Qibla direction and the solar azimuth on August 31, 2025, at 
09:23 local time, for a location with latitude 48.85° North and longitude 2.35° 
East (Paris, France). The location has an elevation of 35 meters above sea level, 
and the local timezone is UTC+2 (Central European Summer Time). Generate 
a polar plot to visualize both the Qibla direction and the position of the sun at 
that specific time.

Exercise 6

Visualize the Qibla direction and the solar azimuth on October 10, 2025, at 
16:10 local time, for a location with latitude 1.29° North and longitude 103.85° 
East (Singapore). The location has an elevation of 15 meters, and the local 
timezone is UTC+8 (Singapore Standard Time). Generate a plot that shows the 
sun’s azimuth alongside the Qibla direction.
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Exercise 7

Visualize the Qibla direction and the solar azimuth on December 5, 2025, at 
07:00 local time, for a location with latitude 40.71° North and longitude −74.01° 
West (New York City, USA). The location has an elevation of 10 meters above 
sea level, and the local timezone is UTC−5 (Eastern Standard Time). Create 
a visualization to compare the sun’s position with the Qibla direction during 
sunrise hours.
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10Sun Position 
during Prayer 
Times Visualization

VISUALIZING THE SUN POSITION

Prayer times are determined by the sun’s position relative to the observer. Each 
prayer time corresponds to a specific solar event:

	 1.	Zuhur begins when the sun reaches its highest point (zenith) in the 
sky, directly above the observer’s location (solar noon).

	 2.	Asr starts when the length of an object’s shadow equals its actual 
height (or twice its height, depending on the school of thought).

	 3.	Maghrib begins at sunset, when the sun completely disappears 
below the horizon.

	 4.	 Isha and Fajr depend on atmospheric twilight caused by the sun’s 
diffraction below the horizon.
•	 Isha begins when the sky is fully dark (astronomical twilight 

ends).
•	 Fajr begins at dawn when the first light appears (astronomical 

twilight begins).
	 5.	Sunrise marks the end of Fajr and the beginning of daytime.

This visualization helps illustrate these key solar positions, making it easier to 
understand the astronomical basis of Islamic prayer times. Before diving into 
the code, let’s first understand the objective and the expected output:

Python for Islamic Astronomy

DOI:  10.1201/9781003649120-10

10.1201/9781003649120-10

http://dx.doi.org/10.4324/9781003649120-10
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Sun Position during Prayer Times 
Visualization

	 A.	Objective

We want to create a simple visualization that shows:

	 1.	The position of an observer (stick figure) at a certain location.
	 2.	The position of the sun in the sky at a specific altitude angle.
	 3.	The horizon line as a reference (0°).

	 B.	Expected Output

A plot containing the following elements:

	 1.	Green line: Horizon (ground level).
	 2.	Simple human figure: Representation of the observer.
	 3.	Orange circle: The sun at a certain elevation.
	 4.	Dashed line: Line of sight from the observer to the sun.

To visualize the position of the sun based on the observer, the step is as follows:

	 1.	 Import Libraries: Use matplotlib for plotting and numpy for math-
ematical calculations.

	 2.	Setup Positions:
•	 Observer coordinates (observer_x, observer_y).
•	 Sun’s altitude angle (altitude_angle).

	 3.	Calculate Sun Position Based on the Angle (sun_x, sun_y).
	 4.	Plot the Visualization:

•	 Draw the horizon as a straight line.
•	 Represent the sun as an orange dot.
•	 Draw a stick figure (if an image is available).

Here is the Complete Code with Inline Explanations, but first, install related 
libraries.

Import Library

import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image

http://www.matplotlib.pyplot
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import requests
import io # Import io to handle the image data in 
memory

Set Observer and Sun Positions

observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = 40 # Angle in degrees (negative for 
below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

Calculate the Sun’s Position Based on the Angle

sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np.​t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

Plot the Visualization

fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax.​pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”

# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes

http://www.np﻿.﻿tan
http://www.ax﻿.﻿plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
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# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

# Setup position of stick figure (on the horizon)
stick_x, stick_y = 5, 0
ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax.​pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Draw the line of sight (dashed line)
ax.​pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“−”, 
linewidth=1)
ax.​te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax.​te​xt(−0.5, sun_y, f”Sun Position ({altitude_
angle}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)

# Add labels and legend
ax.​ax​is(“off”)
ax.​lege​nd(loc=“upper right”)
ax.set_title(“Sun’s Altitude Visualization”, 
fontsize=14)

plt.​sh​ow()

The result of the code implementation above is shown in Figure 10.1. ​
This visualization demonstrates how solar altitude angles (like those used 

to determine prayer times) can be represented geometrically from an observ-
er’s perspective.

http://www.Image.open
http://www.ax.imshow
http://www.ax﻿.﻿plot
http://www.ax﻿.﻿plot
http://www.ax﻿.﻿text
http://www.ax﻿.﻿text
http://www.ax﻿.﻿axis
http://www.ax﻿.﻿legend
http://www.plt﻿.﻿show
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Exercise 1: Calculating Sun’s Altitude 
Angles for Prayer Times

Use Python’s skyfield library to calculate the sun’s altitude angle at specific 
prayer times (e.g., Asr) for given coordinates and dates.

For example, if asar prayer time on 13 November 2024, lat 3, long 101, 
timezone 8 is 4:32, the determination of the sun’s altitude angle is:

Skyfield Installation

!pip install skyfield

# 2. Library Imports
from skyfield​.a​pi import load, wgs84
from skyfield.almanac import find_transits,find_
settings, find_risings
from datetime import datetime, timedelta
import math

# 3. Load Astronomical Data
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
sun = eph[‘Sun’]

FIGURE 10.1  Visualization of sun position in respect to an observer.

http://www.skyfield.api
http://www.de440s.bsp
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# 4. Define Observer’s Location
latitude=3
longitude = 101
timezone = 8

# 5. Define Date and Time
day = 13
month = 11
year = 2024
hour = 16
minute = 32
month_name = calendar.month_name[month]

# 6. Initialize Observer Location
observer = eph[‘Earth’] + wgs84​.latl​on(latitude, 
longitude)

# 7. Calculate Sun’s Apparent Position
sun_astro = observer​.​at(ts​.u​tc(year, month, day, hour, 
minute)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()

# 8. Output the Sun’s Altitude
print(f’the Altitude of Sun at Asr prayer time on 
{day} {month_name} {year}, at coordinate lat: 
{latitude}, long: {longitude}, tz: {timezone}, at 
{hour}:{minute} Local Time is {sun_alt.degrees}’)

This Python code calculates the altitude of the Sun (in degrees) at a specific 
location, date, and time using the Skyfield library. Here’s how the code works:

Library Imports

•	 skyfield​.api​: Provides tools to load astronomical data and calculate 
celestial positions.

•	 skyfield.almanac: Contains functions for calculating astronomical 
events, though not directly used here.

•	 datetime, timedelta: Handles date and time manipulation.
•	 math: Not used in this snippet but available for rounding operations 

if needed.

http://www.wgs84.latlon
http://www.observer.at
http://www.ts.utc
http://www.sun_app.altaz
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Load Astronomical Data
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
sun = eph[‘Sun’]

•	 ts = load.timescale(): Initializes a timescale object for handling 
time-related calculations.

•	 eph = load(‘de440s​.b​sp’): Loads the DE440s ephemeris file con-
taining accurate positional data for celestial objects.

•	 sun = eph[‘Sun’]: Loads positional data for the Sun.

Define Observer’s Location

latitude = 3
longitude = 101
timezone = 8

•	 latitude and longitude: Specify the geographic coordinates of the 
observer. These coordinates correspond to a location in Malaysia.

•	 timezone: The local timezone offset from UTC (Malaysia = +8).

Define Date and Time

day = 13
month = 6
year = 2024
hour = 16
minute = 32

•	 Specifies the exact date (June 13, 2024) and time (16:32 in local 
time) for which the sun’s altitude will be calculated.

Initialize Observer Location

observer = eph[‘Earth’] + wgs84​.latl​on(latitude, 
longitude)

•	 Combines the Earth’s position with the observer’s location using the 
WGS84 geodetic system.

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
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Calculate Sun’s Apparent Position

sun_astro = observer​.​at(ts​.u​tc(year, month, day, hour 
− timezone, minute)).observe(sun)
sun_app = sun_astro.apparent()

•	 ts​.u​tc(year, month, day, hour − timezone, minute): Converts the 
local time to UTC by subtracting the timezone offset (16:32 local 
time → 08:32 UTC).

•	 observer​.​at(): Specifies the observer’s position at the given UTC 
time.

•	 observe(sun): Calculates the Sun’s relative position in the sky from 
the observer’s location.

•	 apparent(): Adjusts for atmospheric effects (e.g., refraction) to pro-
vide the apparent position of the Sun.

Calculate Sun’s Altitude

sun_alt, sun_az, distance = sun​_app​.al​taz()

•	 altaz(): Computes the Sun’s altitude, azimuth, and distance from 
the observer.
•	 sun_alt: The altitude of the Sun in degrees (angle above the 

horizon).
•	 sun_az: The azimuth of the Sun in degrees (angle measured 

clockwise from true north).
•	 distance: The distance between the observer and the Sun (not 

used here).

Output the Sun’s Altitude

print(f’the Altitude of Sun during Asr prayer time on 
{day} {month_name} {year}, at coordinate lat: 
{latitude}, long: {longitude}, tz: {timezone}, at 
{hour}:{minute} Local Time is {sun_alt.degrees}’)

•	 sun_alt.degrees: Converts the altitude from radians (default 
Skyfield unit) to degrees and prints it.

•	 The value represents the sun’s angular elevation above the horizon:

http://www.observer.at
http://www.ts.utc
http://www.ts.utc
http://www.observer.at
http://www.sun_app.altaz
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the Altitude of sun during Asr prayer time on 13 
November 2024, at coordinate lat: 3, long: 101, tz: 8, 
at 16:32 Local Time is 33.77219002658052

VISUALIZATION OF SUN POSITION 
DURING ZUHUR PRAYER TIME

Exercise 2: Visualizing the Sun’s 
Altitude at Zuhur Prayer Time for 
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Zuhur prayer 
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone: 
UTC+8 ) on December 19, 2024, with elevation of 100 m.

First, determine the time of Zuhur using the given location.

#Import Necessary Function
from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac

#Load Ephemeris Data and Planet Objects
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

# Variable Input

lat_location = 39.9
long_location = 116.4
timezone = 8
day = 19
month = 12
year = 2024
ele = 100

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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#input into
location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

#Range of Data

t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

# Time of Solar Transit
t = almanac.find_transits(location, sun, t0, t1)
hour_solar_transit = t​.utc​.h​our
minutes_solar_transit = t​.utc​.min​ute
second_solar_transit = t​.utc​.sec​ond

zuhur_time = hour_solar_transit + (minutes_solar_
transit / 60) + (second_solar_transit / 3600 ) + 
timezone + 0.017778

zuhur_time = float(zuhur_time)
degrees = int(zuhur_time )
decimal_part = zuhur_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)

seconds = round((minutes_total − minutes) * 60)
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
hour_solar_transit, minutes_solar_transit, second_
solar_transit)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()
# Check if the sun is above the horizon at zuhur time
if sun_alt.degrees <= 0:

zuhur = “Zuhur Does Not Occur”
else:

zuhur = f”Zuhur Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(zuhur)
Zuhur Occurs at 12° 12′ 36″

The calculated Zuhur prayer time for the specified location is 12:12:36. This 
result is derived from the values stored in the variables: degrees = 12, minutes 
= 12, and seconds = 36. These values represent the time when the sun has just 
passed its daily zenith. It is important to note that this calculation assumes con-
version based on the local time (LTC) using the appropriate time zone offset. 

http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
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However, if we intend to use these values for further astronomical calculations, 
such as determining the solar position, we must ensure that the computation 
is based on UTC (Universal Coordinated Time). This is crucial because astro-
nomical algorithms, such as those used to determine solar altitude or azimuth, 
typically rely on standardized time references like UTC to maintain accuracy 
and consistency across different locations and dates.

From the given time, determine the position of the sun.

# Local time values
h = degrees
m = minutes
s = seconds

# Adjust local time to UTC
h_utc = h − timezone

# Compute observation time using Skyfield
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_utc, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()

print(sun_alt)
26deg 40’ 41.6”

Now we get the position of the sun is 26deg 40’ 41.6” of solar altitude. We can 
use this value to visualize the position of the sun. Visualization of the sun can 
be used using matplotlib. The code could be a little overwhelming, but the 
important thing is the variable.

# 1. Import Library
import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

# 2. Set Observer and Sun Positions
observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = sun_alt.degrees[0] # Angle in degrees 
(negative for below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
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# 3. Calculate the Sun’s position based on the angle
sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np​.t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax​.pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”
# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

stick_x, stick_y = 5, 0 # Position of stick figure (on 
the horizon)
ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax​.pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky_gradient = np.linspace(1, 0, 256).reshape(1, −1)
sky_gradient = np​.vsta​ck((sky_gradient, sky_gradient))
ax​.imsh​ow(sky_gradient, extent=[0, 10, −1.5, 5], 
cmap=‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)
ground = plt.Rectangle((0, −1.5), 10, 1.5, 
color=‘darkgreen’, alpha=0.3)
ax.add_patch(ground)

http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
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# Draw the line of sight (dashed line)
ax​.pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“-”, 
linewidth=1)
ax​.te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax​.te​xt(−0.5, sun_y, f”Sun Position ({altitude_
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)

# Add labels and legend
ax​.ax​is(“off”)
ax​.lege​nd(loc=“upper right”)
ax.set_title(f”Sun’s Altitude Visualization at Zuhur 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month_name} 
{year} {degrees}: {minutes}: {seconds}”, fontsize=14)

plt​.sh​ow()

In the code above, the most important variable is sun_alt.degrees, which repre-
sents the sun’s altitude in degrees at the specified moment. This value is criti-
cal for determining whether the sun meets the required condition for a given 
prayer time. The remaining code functions primarily as a template, providing 
structure for observation and visualization, and does not directly affect the 
outcome of the sun’s altitude calculation. Additionally, when visualizing dif-
ferent prayer times (e.g., Subh, Zuhur, Asar, etc.), ensure that the graph title is 
updated accordingly by modifying the line:

ax.set_title(f”Sun’s Altitude Visualization at Zuhur 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month_name} {year} 
{degrees}: {minutes}: {seconds}”, fontsize=14)

to reflect the specific prayer time being analyzed. The result of the coding 
visualization is shown in Figure 10.2. ​

http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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VISUALIZATION OF SUN POSITION 
DURING ASAR PRAYER TIME

Exercise 3: Visualizing the Sun’s 
Altitude at Asar Prayer Time for 
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Asar prayer 
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone: 
UTC+8 ) on December 19, 2024. In exercise 3, the given data only includes 
location coordinates and dates. Therefore, we need to calculate the sun’s alti-
tude at the time of Asar as explained in Chapter 7. After that, we can then cre-
ate a visualization of the sun’s altitude at the time of Asar. First, calculate the 
time of Asar prayer time

#Calculate Asr Prayer Time and Sun’s Altitude
# 1. Import Necessary Function
from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math
import calendar

FIGURE 10.2  Visualization of sun position during Zuhr prayer time.

http://www.skyfield.api
http://www.skyfield.api
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# 2. Define Observer’s Location
lat_location = 39.9
long_location = 116.4
timezone = 8

# 3. Define Date
day = 19
month = 12
year = 2024
month_name = calendar.month_name[month]

# 4. Load Astronomical Data
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

# 6. Initialize Observer Location
location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

# 7. Setup range of calculate date for calculating 
solar transit
t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

# 8. Calculate the time of solar transit
t = almanac.find_transits(location, sun, t0, t1)

# 9. The position of sun altitude at the time of the 
solar transit
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()

# 10. Calculate the length of the sun shadow during 
transit
sun_shadow_transit = 1/(ma​​th​.t​a​n(mat​h.rad​ians(​sun_a​
lt.de​grees​)))

# 11. Calculate the length of the sun shadow at Asr 
Prayer Time
sun_shadow_asar = 1 + sun_shadow_transit

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.math.tan
http://www.math.radians
http://www.sun_alt.degrees
http://www.sun_alt.degrees
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# 12. Loop the sun shadow does not pass the length of 
the asar sun shadow
# Start with hour
# Start with hour

test = 1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow= 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
break

if test > 24:
break

if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length 
matches or exceeds the desired length

h += 1

# Once the condition is met for hours, move to minutes
h_asar = h − 1
test=1
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
break

if test > 1440:
break

if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length 
matches or exceeds the desired length

m += 1

http://www.location.at
http://www.ts.utc
http://www.math.tan
http://www.location.at
http://www.ts.utc
http://www.math.tan
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# Increment time in minutes
m_asar = m − 1
test = 1

# Once the condition is met for minutes, move to 
seconds
while True:

# Calculate the shadow length
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_asar, m_asar, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
sun_shadow = 1 / math​.t​an(math.radians(sun_alt.
degrees))

if sun_alt.degrees <= 0:
break

if test > 86400:
break

if sun_shadow >= sun_shadow_asar:
break # Exit the loop if the shadow length 
matches or exceeds the desired length

s += 1

# Increment time in seconds

s_asar = s

asar_time = (h_asar + (m_asar) / 60 + s_asar / 3600) + 
timezone
asar_time = float(asar_time)
degrees = int(asar_time)
decimal_part = asar_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees <= 0 or test >86400:
asar = “Asar Does Not Occur”

else:
asar = f”Asar Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(asar)
Asar Occurs at 14° 34′ 7″

http://www.location.at
http://www.ts.utc
http://www.math.tan
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Second, sun’s altitude visualization,

# 1. Import Library
import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

# 2. Set Observer and Sun Positions
observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = sun_alt.degrees[0] # Angle in degrees 
(negative for below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np​.t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax​.pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”
# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

stick_x, stick_y = 5, 0 # Position of stick figure (on 
the horizon)

http://www.matplotlib.pyplot
http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
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ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax​.pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky_gradient = np.linspace(1, 0, 256).reshape(1, −1)
sky_gradient = np​.vsta​ck((sky_gradient, sky_gradient))
ax​.imsh​ow(sky_gradient, extent=[0, 10, −1.5, 5], 
cmap=‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)
ground = plt.Rectangle((0, −1.5), 10, 1.5, 
color=‘darkgreen’, alpha=0.3)
ax.add_patch(ground)
# Draw the line of sight (dashed line)
ax​.pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“-”, 
linewidth=1)
ax​.te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax​.te​xt(−0.5, sun_y, f”Sun Position ({altitude_
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)

# Add labels and legend
ax​.ax​is(“off”)
ax​.lege​nd(loc=“upper right”)
ax.set_title(f”Sun’s Altitude Visualization at Asr 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month_name} 
{year} {degrees}: {minutes}: {seconds}”, fontsize=14)

plt​.sh​ow()

http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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The result of the code implementation above is shown in Figure 10.3.​

VISUALIZATION OF SUN POSITION 
DURING MAGHRIB PRAYER TIME

Exercise 4: Visualizing the Sun’s 
Altitude at Maghrib Prayer Time for 
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Maghrib prayer 
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone: 
UTC+8 ) on December 19, 2024, with elevation of 100 m. First, determine the 
maghrib prayer time.

#Import Necessary Function
from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac

#Load Ephemeris Data and Planet Objects
ts = load.timescale()

FIGURE 10.3  Visualization of sun position during Asar prayer time.

http://www.skyfield.api
http://www.skyfield.api
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eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

# Variable Input
lat_location = 39.9
long_location = 116.4
timezone = 8
day = 19
month = 12
year = 2024
ele = 100

#input into
location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=0)

#Range of Data

t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond

maghrib_time = float(h + m / 60 + s / 3600 + timezone)
maghrib_time %= 24 # Ensure 24-hour clock format
maghrib_time = float(maghrib_time)
degrees = int(maghrib_time)
decimal_part = maghrib_time − degrees

http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
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minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, m, 
s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()
if sun_alt.degrees >= 0:

maghrib = “Maghrib Does Not Occur”
else:

maghrib = f”Maghrib Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(maghrib)
Maghrib Occurs at 16° 53′ 43″

First, determine sun altitude.

# Local time values
h = degrees
m = minutes
s = seconds

# Adjust local time to UTC
h_utc = h − timezone

# Compute observation time using Skyfield
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_utc, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()

print(sun_alt)
−01deg 09’ 42.5”

Then visualize the position of the sun

# 1. Import Library
import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
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# 2. Set Observer and Sun Positions
observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = sun_alt.degrees # Angle in degrees 
(negative for below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np​.t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax​.pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”
# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

stick_x, stick_y = 5, 0 # Position of stick figure (on 
the horizon)
ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax​.pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky_gradient = np.linspace(1, 0, 256).reshape(1, −1)

http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
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sky_gradient = np​.vsta​ck((sky_gradient, sky_gradient))
ax​.imsh​ow(sky_gradient, extent=[0, 10, −1.5, 5], 
cmap=‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)
ground = plt.Rectangle((0, −1.5), 10, 1.5, 
color=‘darkgreen’, alpha=0.3)
ax.add_patch(ground)

# Draw the line of sight (dashed line)
ax​.pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“-”, 
linewidth=1)
ax​.te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax​.te​xt(−0.5, sun_y−1, f”Sun Position ({altitude_
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)
# Add labels and legend

FIGURE 10.4  Visualization of sun position during Maghrib prayer time.

http://www.np.vstack
http://www.ax.imshow
http://www.ax.plot
http://www.ax.text
http://www.ax.text
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ax​.ax​is(“off”)
ax​.lege​nd(loc=“upper right”)
ax.set_title(f”Sun’s Altitude Visualization at Maghrib 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month} {year} 
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt​.sh​ow() ​

The result of the code implementation above is shown in Figure 10.4.

VISUALIZATION OF SUN POSITION 
DURING ISYA’ PRAYER TIME

Exercise 5: Visualizing the Sun’s 
Altitude at Isya’ Prayer Time for 
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Isya’ prayer 
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone: 
UTC+8 ) on December 19, 2024, for solar depression degree of 16. First, deter-
mine the Isya’ prayer time

#Import Necessary Function
from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

#Load Ephemeris Data and Planet Objects
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

# Variable Input

lat_location = 39.9
long_location = 116.4

http://www.ax.axis
http://www.ax.legend
http://www.plt.show
http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
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timezone = 8
day = 19
month = 12
year = 2024
ele = 100

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)
t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

t, y = almanac.find_settings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond
#print(h,m,s)

m=1
s=1
h=h+1

sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m)).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, distance = sun​_app​.al​taz()
#print(sun_alt)

# Start with hour

isya_angle = 16
elevation_correction = 0.0293 * math​.sq​rt(ele)
isha_angle_actual = −isya_angle −elevation_correction
#print(isya_angle_corrected)

http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.location.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.math.sqrt
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# Start with hour

test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h+1, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 24:
break

if sun_alt.degrees <= isha_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

h =h+ 1

# Once the condition is met for hours, move to minutes
h_isya = h − 1
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 1440:
break

if sun_alt.degrees <= isha_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

m += 1

# Increment time in minutes
m_isya = m − 1

http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
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# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_isya, m_isya, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 86400:
break

if sun_alt.degrees <= isha_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

s += 1

# Increment time in seconds

s_isya = s

isya_time = float(h_isyak + m_isyak / 60 + s_isyak / 
3600 + timezone)
isya_time %= 24 # Ensure 24-hour clock format
isya_time = float(isya_time)
degrees = int(isya_time)
decimal_part = isya_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
isya = “Isya’ Does Not Occur”

else:
isya = f”Isya’ Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(isya)
Isya’ Occurs at 18° 19′ 59″

http://www.location.at
http://www.ts.utc
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Determine the sun altitude during Isya’ Prayer Time

# Local time values
h = degrees
m = minutes
s = seconds

# Adjust local time to UTC
h_utc = h − timezone

# Compute observation time using Skyfield
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_utc, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()

print(sun_alt)
−16deg 17’ 40.3”

Visualize the position of the sun during Isya’ Prayer Time

# 1. Import Library
import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

# 2. Set Observer and Sun Positions
observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = sun_alt.degrees # Angle in degrees 
(negative for below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np​.t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
http://www.np.tan
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# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax​.pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”
# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

stick_x, stick_y = 5, 0 # Position of stick figure (on 
the horizon)
ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax​.pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky_gradient = np.linspace(1, 0, 256).reshape(1, −1)
sky_gradient = np​.vsta​ck((sky_gradient, sky_gradient))
ax​.imsh​ow(sky_gradient, extent=[0, 10, −1.5, 5], 
cmap=‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)
ground = plt.Rectangle((0, −1.5), 10, 1.5, 
color=‘darkgreen’, alpha=0.3)
ax.add_patch(ground)

# Draw the line of sight (dashed line)
ax​.pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
http://www.ax.imshow
http://www.ax.plot
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# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“-”, 
linewidth=1)
ax​.te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax​.te​xt(−0.5, sun_y−1, f”Sun Position ({altitude_
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)
# Add labels and legend
ax​.ax​is(“off”)
ax​.lege​nd(loc=“upper right”)
ax.set_title(f”Sun’s Altitude Visualization at Isya’ 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month} {year} 
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt​.sh​ow() ​

The result of the code implementation above is shown in Figure 10.5.

FIGURE 10.5  Visualization of sun position during Isya’ prayer time.

http://www.ax.text
http://www.ax.text
http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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VISUALIZATION OF SUN POSITION 
DURING SUBH PRAYER TIME

Exercise 6: Visualizing the Sun’s 
Altitude at Subh Prayer Time for 
the Given Location and Date

Create a visualization that shows the sun’s position in the sky at Subh prayer 
time for the given coordinates (latitude: 39.9°N, longitude: 116.4°E, time zone: 
UTC+8 ) on December 19, 2024, for solar depression degree of 15. First, deter-
mine the Subh prayer time

#Import Necessary Function
from skyfield​.a​pi import load
from skyfield​.a​pi import N, S, E, W, wgs84
from skyfield import almanac
import math

#Load Ephemeris Data and Planet Objects
ts = load.timescale()
eph = load(‘de440s​.b​sp’)
planets = load(‘de440s​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]

# Variable Input

lat_location = 39.9
long_location = 116.4
timezone = 8
day = 19
month = 12
year = 2024
ele = 100

location = earth + wgs84​.latl​on(lat_location, long_
location, elevation_m=ele)
t0 = ts​.u​tc(year, month, day)
t1 = ts​.u​tc(year, month, day + 1)

http://www.skyfield.api
http://www.skyfield.api
http://www.de440s.bsp
http://www.de440s.bsp
http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
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from skyfield​.uni​ts import Angle
from numpy import arccos
from skyfield.earthlib import refraction

altitude_m = ele
earth_radius_m = 6378136.6
side_over_hypotenuse = earth_radius_m / (earth_
radius_m + altitude_m)
h = Angle​(radi​ans=−​arcco​s(sid​e_ove​r_hyp​otenu​se))
solar_radius_degrees = 16 / 60
r = refraction(0.0, temperature_C=15.0, 
pressure_mbar=1030.0)

t, y = almanac.find_risings(location, sun, t0, t1, 
horizon_degrees=−r + h.degrees − solar_radius_degrees)
h, m, s = t​.utc​.ho​ur, t​.utc​.minu​te, t​.utc​.sec​ond

subh_angle = 16
elevation_correction = 0.0293 * math​.sq​rt(ele)
subh_angle_actual = −subh_angle − elevation_correction

# Start with hour

test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, h, 
m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun

if sun_alt.degrees >= 0:
break

if test > 24:
break

if sun_alt.degrees <= subh_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

h −= 1

# Once the condition is met for hours, move to minutes
h_subh = h + 1
test =1

http://www.skyfield.units
http://www.t.utc.hour,
http://www.t.utc.minute,
http://www.t.utc.second
http://www.math.sqrt
http://www.location.at
http://www.ts.utc
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while True:
# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
if sun_alt.degrees >= 0:

break
if test > 1440:

break

if sun_alt.degrees <= subh_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

m −= 1

# Increment time in minutes
m_subh = m + 1

# Once the condition is met for minutes, move to 
seconds
test = 1
while True:

# Calculate the Solar Altitude
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_subh, m_subh, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz() # Get 
the altitude of the sun
if sun_alt.degrees >= 0:

break
if test > 86400:

break

if sun_alt.degrees <= subh_angle_actual:
break # Exit the loop if the solar altitude 
located below −18 degree

s −= 1

# Increment time in seconds

s_subh = s +1

subh_time = float(h_subh + (m_subh) / 60 + s_subh / 
3600 + timezone)

http://www.location.at
http://www.ts.utc
http://www.location.at
http://www.ts.utc
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subh_time %= 24 # Ensure 24-hour clock format
subh_time = float(subh_time)
degrees = int(subh_time)
decimal_part = subh_time − degrees
minutes_total = decimal_part * 60
minutes = int(minutes_total)
seconds = round((minutes_total − minutes) * 60)

if sun_alt.degrees >= 0 or test >86400:
subh = “Subuh Does Not Occur”

else:
subh = f”Subuh Occurs at {degrees}° {minutes}′ 
{seconds}″”

print(subh)

Determine the sun altitude of Subh

# Local time values
h = degrees
m = minutes
s = seconds

# Adjust local time to UTC
h_utc = h − timezone

# Compute observation time using Skyfield
sun_astro = location​.​at(ts​.u​tc(year, month, day, 
h_utc, m, s)).observe(sun)
sun_alt, _, _ = sun_astro.apparent().altaz()

print(sun_alt)
−16deg 11’ 25.1”

Determine and visualize the position of the sun during Subh prayer time.

# 1. Import Library
import matplotlib​.pypl​ot as plt
import numpy as np
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

http://www.location.at
http://www.ts.utc
http://www.matplotlib.pyplot
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# 2. Set Observer and Sun Positions
observer_x, observer_y = 5, 0 # Observer’s position on 
the horizon
altitude_angle = sun_alt.degrees # Angle in degrees 
(negative for below horizon)
distance_to_sun = 3 # Arbitrary horizontal distance to 
the Sun

# 3. Calculate the Sun’s position based on the angle
sun_x = observer_x − distance_to_sun # Place the Sun 
to the left of the observer
sun_y = observer_y + np​.t​an(np.radians(altitude_
angle)) * distance_to_sun # Calculate vertical 
position

# 4. Plot the Visualization
fig, ax = plt.subplots(figsize=(10, 6))

# Draw the horizon (straight line)
ax​.pl​ot([0, 10], [0, 0], color=“green”, linewidth=2, 
label=“Horizon”)

# Add stick figure to the plot using direct download 
link from Google Drive URL
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1T7​pLZN​W6dF​9PKx​dOZ9​UXZD​bA84​teRSdx”
# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
stick_figure = Image​.op​en(io.BytesIO(response.
content))

stick_x, stick_y = 5, 0 # Position of stick figure (on 
the horizon)
ax​.imsh​ow(stick_figure, extent=(stick_x − 0.3, stick_x 
+ 0.3, stick_y, stick_y + 1))

# Add the Sun as an orange dot
ax​.pl​ot(sun_x, sun_y, marker=“o”, color=“orange”, 
markersize=10, label=“Sun”)

# Add sky gradient (blue)
sky_gradient = np.linspace(1, 0, 256).reshape(1, −1)
sky_gradient = np​.vsta​ck((sky_gradient, sky_gradient))

http://www.np.tan
http://www.ax.plot
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
https://drive.google.com/uc?export=download&id=1T7pLZNW6dF9PKxdOZ9UXZDbA84teRSdx
http://www.requests.get
http://www.Image.open
http://www.ax.imshow
http://www.ax.plot
http://www.np.vstack
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ax​.imsh​ow(sky_gradient, extent=[0, 10, −1.5, 5], 
cmap=‘Blues’, alpha=0.3, aspect=‘auto’)

# Add ground (green)
ground = plt.Rectangle((0, −1.5), 10, 1.5, 
color=‘darkgreen’, alpha=0.3)
ax.add_patch(ground)

# Draw the line of sight (dashed line)
ax​.pl​ot([observer_x, sun_x], [observer_y + 0.8, 
sun_y], color=“black”, linestyle=“--”, linewidth=1, 
label=“Line of Sight”)

# Add altitude scale
ax.axhline(0, color=“black”, linestyle=“-”, 
linewidth=1)
ax​.te​xt(−0.5, 0, “Horizon (0°)”, va=“center”, 
ha=“right”, fontsize=10, color=“green”)
ax​.te​xt(−0.5, sun_y−1, f”Sun Position ({altitude_
angle:.4f}°)”, va=“center”, ha=“right”, fontsize=10, 
color=“orange”)

# Adjust the plot
ax.set_xlim(0, 10)
ax.set_ylim(−1.5, 5)
# Add labels and legend

FIGURE 10.6  Visualization of sun position during Subh prayer time.

http://www.ax.imshow
http://www.ax.plot
http://www.ax.text
http://www.ax.text
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ax​.ax​is(“off”)
ax​.lege​nd(loc=“upper right”)
ax.set_title(f”Sun’s Altitude Visualization at Subh 
Prayer Time\n Lat: {lat_location}° N Long: {long_
location}° E TZ: {timezone}\n {day} {month} {year} 
{degrees}: {minutes}: {seconds}”, fontsize=14)

plt​.sh​ow() ​

The result of the code implementation above is shown in Figure 10.6.

Exercise 1: Subh

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Subuh (Fajr) prayer 
time for the date 27 December 2025 using a solar depression angle of −18 
degrees, and visualize the sun’s altitude when it reaches this angle before 
sunrise.

Exercise 2: Syuruk

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Syuruk (sunrise) 
time for the date 27 December 2025 and visualize the sun’s altitude curve 
around sunrise.

Exercise 3: Zuhur

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Zuhur (prayer time) 
for the date 27 December 2025, and visualize the sun’s altitude at its highest 
point on that day.

Exercise 4: Asar

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Asar prayer time 
for the date 27 December 2025 using both the standard shadow ratio (1×) and 
the Hanafi method (2×), and visualize the sun’s altitude now of each Asar time.

http://www.ax.axis
http://www.ax.legend
http://www.plt.show
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Exercise 5: Maghrib

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Maghrib prayer time 
for the date 27 December 2025 based on the time of sunset and visualize the 
sun’s altitude as it crosses the horizon.

Exercise 6: Isya’

Using the coordinates of Tokyo, which are 35.6894° North, 139.6916° East, 
elevation 100 m, and a time zone of GMT+9, calculate the Isya’ (Isha) prayer 
time for the date 27 December 2025 using a solar depression angle of −18 
degrees, and visualize the sun’s altitude as it reaches that angle after sunset.
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11Lunar Crescent 
Observation  
Data Visualization

Matplotlib is a plotting library for the Python programming language and 
its numerical mathematics extension, NumPy. It provides an object-oriented 
API for embedding plots into applications using general-purpose GUI toolkits 
like Tkinter, wxPython, Qt, or GTK. There is also a procedural “pylab” inter-
face based on a state machine (like OpenGL), designed to closely resemble 
MATLAB, though its use is discouraged. SciPy uses Matplotlib. Matplotlib 
was originally written by John D. Hunter. Since then, it has developed an active 
community and is distributed under a BSD-style license. Michael Droettboom 
was appointed as the lead developer of Matplotlib shortly before John Hunter’s 
passing in August 2012 and was later joined by Thomas Caswell. Matplotlib 
can be used to create maps, plot various types of graphs, and is highly flexible 
for customization. Therefore, in this class, we will learn how to use Matplotlib 
for generating visualizations of crescent moon (hilal) data.

FIRST PRACTICE: PENANG MALAYSIA

	A.	 Horizon Generation
The horizon generation must cover 360 degrees in azimuth and 180 
degrees in altitude. This ensures that the generated horizon can visualize 
the visibility data of the crescent moon (hilal) across various locations and 
dates. The determination for horizon generation is as follows:
import matplotlib​.pypl​ot as plt
import numpy as np

fig, ax = plt.subplots(figsize=(20,10))

Python for Islamic Astronomy Lunar Crescent Observation Data 
Visualization

DOI:  10.1201/9781003649120-11

10.1201/9781003649120-11

http://www.matplotlib.pyplot
http://dx.doi.org/10.4324/9781003649120-11
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Lunar Crescent Observation Data 
Visualization

horizon_angles = np.linspace(0, 360, 720)
horizon_altitudes = np.zeros_like(horizon_angles)
ax​.pl​ot(horizon_angles, horizon_altitudes, 
color=‘black’, linestyle=‘-’, linewidth=1)

The result of the above programming is shown in Figure 11.1. ​
The generated line represents the observer’s horizon line.

	B.	 Solar Position Visualization and Graph Labelling
To display the sun’s position (represented in yellow), the following pro-
gramming steps are implemented:
# Sun Position Determination
sun_az = 287
sun_alt = −1

moon_az = 283
moon_alt = 12.00474
daz = abs(sun_az-moon_az)
arcl = 13.03075
Location = “Penang, Malaysia”
day = 12
month = 1
year = 2024
month_name = calendar.month_name[month]

The graph is annotated using these key methods:
ax.set_xlabel(‘Azimuth (degrees)’)
ax.set_ylabel(‘Altitude (degrees)’)
ax.set_title(‘ The Position of the Moon and Sun During 
Observation ‘)

FIGURE 11.1  Observer horizon line.

http://www.ax.plot
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With this, the altitude and azimuth have been labelled for easier interpretation. 
Typically, we observe the sun and the central reference line aligned at the mid-
point. To ensure the black horizon line and the sun are centered, the following 
adjustments are made (Figure 11.2):​

xlim_max = max(sun_az − (daz * 2), sun_az + (daz * 2))
xlim_min = min(sun_az − (daz * 2), sun_az + (daz * 2))

ax.set_xlim((xlim_min, xlim_max))
ax.set_ylim((sun_alt − 2), (moon_alt + 5))

	C.	 Next is to display the moon’s position. The moon’s shape uses a cres-
cent moon image. Please download the crescent moon position file 
from Google image search with a transparent background. Upload the 
crescent moon image to Google Drive with public access. The pro-
gramming to determine the crescent moon’s position is as follows:

from PIL import Image
import requests
import io # Import io to handle the image data in 
memory
from matplotlib.offsetbox import OffsetImage, 
AnnotationBbox
# Add the crescent moon image as a marker
opposite = moon_alt − sun_alt
adjacent = (moon_az − sun_az)

FIGURE 11.2  Observer horizon line with sun.
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# Calculate the angle using the tangent function (TOA)
angle_rad = math.atan2(opposite, adjacent)

# Convert the angle to degrees
angle_degrees = (math.degrees(angle_rad))

# Load the crescent moon image
# Modified the Google Drive URL to get the direct 
download link
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1ZF​bJ5p​WYv3​ZE4S​Y50R​me7w​8iej​zKRik4”

# Download the image content from the URL
response = requests​.g​et(image_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
crescent_img = Image​.op​en(io.BytesIO(response.
content))

# Rotate the crescent moon image based on the 
calculated angle
rotated_img = crescent​_img​.rot​ate(angle_degrees)

# Add the crescent moon image as a marker
imagebox = OffsetImage(rotated_img, zoom=0.03) # 
Adjust zoom as needed
# Using the correct moon position variables moon_az 
and moon_alt
ab = AnnotationBbox(imagebox, (moon_az, moon_alt), 
frameon=False)
ax.add_artist(ab)

plt​.sh​ow() # Added this line to display the plot

Thus, the crescent moon’s position relative to the sun can be clearly illus-
trated (Figure 11.3).​

	D.	 Sky Background Generation
The next step involves creating the celestial background. The implementa-
tion requires these steps:

from matplotlib​.colo​rs import LinearSegmentedColormap 
# Import LinearSegmentedColormap

https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
http://www.requests.get
http://www.Image.open
http://www.crescent_img.rotate
http://www.plt.show
http://www.matplotlib.colors
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# Sky Background Generation
sky = LinearSegmentedColormap.from_list(‘sky’, 
[‘blue’,’white’, ‘yellow’, ‘orange’])
extent = ax.get_xlim() + ax.get_ylim() # Adjusted to 
use current xlim and ylim
ax​.imsh​ow([[0, 0], [1, 1]], cmap=sky, 
interpolation=‘bicubic’, extent=extent)

	E.	 Next is to display the MABIMS criteria on the visualization. First, 
we’ll visualize the elongation criterion. On this plot, elongation is rep-
resented as a radial distance from the sun’s center. The implementation 
code is as follows (Figure 11.4):​

from matplotlib.patches import Arc # Import the Arc 
class
# Visualization of Elongation Criteria
sun_az_degrees = sun_az
sun_alt_degrees = sun_alt
moon_az_degrees = moon_az
moon_alt_degrees = moon_alt

kriteria_elongasi = 6.4
circle_radius = kriteria_elongasi

# Sun center coordinates
sun_center_x = sun_az
sun_center_y = sun_alt

FIGURE 11.3  Observer horizon line with sun and moon.

http://www.ax.imshow


﻿11  •  Lunar Crescent Observation Data Visualization  173

# Semicircle parameters
radius = kriteria_elongasi
x1 = sun_az−kriteria_elongasi
x2 = sun_az+kriteria_elongasi

# Calculate the starting and ending angles of the 
semicircle

arccos_value_start_angle = np​.arcc​os(((x1 − sun_
center_x) / radius))
arccos_value_end_angle = np​.arcc​os(((x2 − sun_
center_x) / radius))

FIGURE 11.4  Visualization of observer horizon with sun and moon position.

http://www.np.arccos
http://www.np.arccos
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if np​.is​​​nan(n​​p​.arc​​​cos((​arcco​s_val​ue_st​art_a​ngle)​)):
start_angle = 0.000001

else:
start_angle = 180 
− np.degrees(arccos_value_start_angle)

if np​.is​​​nan(n​​p​.arc​​​cos((​arcco​s_val​ue_en​d_ang​le)))​:
end_angle = 180+0.000001

else:
end_angle = 180 
− np.degrees(arccos_value_end_angle)

​​pr​int(s​tart_​angle​,end_​angle​)
# Create the semicircle patch
semicircle_patch = Arc((sun_center_x, sun_center_y), 2 
* radius, 2 * radius, theta1=start_angle, 
theta2=end_angle,

fill=False, color=‘blue’, linestyle=‘--’)
# Add the semicircle patch to the plot
​​ax​.add_​patch​(semi​circl​e_pat​ch)

	F.	 Next is the visualization of the Altitude Criterion. Altitude Criteria are 
calculated relative to the horizon (0° altitude). The implementation will 
display as shown in Figures 11.5–11.8:​ ​

# Visualization of Altitude Criteria
kriteria_altitude = 3
horizontal_line_y = kriteria_altitude
x1 = 0
x2 = sun_az-kriteria_elongasi
​​ax​​.hlin​​​es(y=​horiz​ontal​_line​_y,xm​in=x1​, 
xmax=x2,color=‘red’, linestyle=‘--’)

x11 = sun_az+kriteria_elongasi
x22 = 360
​​ax​​.hlin​​​es(y=​horiz​ontal​_line​_y,xm​in=x1​1, 
xmax=x22,color=‘red’, linestyle=‘--’)

	G.	 Add Logo

# Load the Logo
# Modified the Google Drive URL to get the direct 
download link
logo_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1​_HEq​0C3b​v33i​54Hl​brJK​D4Zm​dxap8Q8a”

http://www.np.isnan
http://www.np.arccos
http://www.np.isnan
http://www.np.arccos
http://www.ax.hlines
http://www.ax.hlines
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
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# Download the image content from the URL
response = requests​.g​et(logo_url)
response.raise_for_status() # Raise an exception for 
bad status codes
# Open the image from the downloaded content
logo_img = Image​.op​en(io.BytesIO(response.content))

# Add the logo to the plot (bottom right corner)
logo_box = OffsetImage(logo_img, zoom=0.1) # Adjust 
zoom as needed

FIGURE 11.5  Visualization of observer horizon with sun and moon position with 
elongation criterion.

http://www.requests.get
http://www.Image.open
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logo_ab = AnnotationBbox(logo_box, (xlim_max – 2.5, 
sun_alt − 1), frameon=False) # Position adjusted based 
on plot limits
ax.add_artist(logo_ab)​

	H.	 Plot the Moon’s Altitude Line and Elongation

# Altitude Line
ax​.vlin​es(x=moon_az, ymin=0, ymax=moon_alt, 
color=‘blue’, linestyle=‘--’)

FIGURE 11.6  Visualization of observer horizon with sun and moon position with 
elongation and altitude criterion.

http://www.ax.vlines
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ax​.te​xt(moon_az+0.3, moon_alt/2, f’Moon Altitude : 
{moon_alt:.2f}’, color=‘blue’, fontsize=10, ha=‘left’)

# Elongation Line
ax​.pl​ot([moon_az, sun_az], [moon_alt, sun_alt], 
color=‘green’, linestyle=‘--’)
ax​.te​xt(sun_az-2, arcl/2-1, f’Elongation: {arcl:.2f}’, 
color =‘green’, fontsize=10, ha=‘left’)

plt​.sh​ow() # Added this line to display the plot ​

FIGURE 11.7  Visualization of observer horizon with sun and moon position with 
elongation and altitude criterion, added with logo.

http://www.ax.text
http://www.ax.plot
http://www.ax.text
http://www.plt.show
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SECOND PRACTICE: BANDA 
ACEH INDONESIA

Exercise 1

Visualize new moon observation data for May 27, 2025, on Observation 
Location: Banda Aceh, Indonesia, Lat: 5.548290 N, 95.323753 East, UTC+7.

FIGURE 11.8  Visualization of observer horizon with sun and moon position with 
elongation and altitude criterion, added with logo and dash line.
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# Install required libraries
!pip install skyfield # Astronomical calculations
!pip install numpy # Numerical operations
!pip install scipy # Scientific computing
!pip install matplotlib # Plotting library
!pip install tabulate # Pretty-print tables

# Import necessary modules
from skyfield import almanac
from skyfield​.a​pi import Topos,load
from skyfield import api
import numpy as np
from skyfield​.a​pi import N, S, E, W, load, wgs84
from skyfield​.a​pi import Topos, load, 
Angle,GREGORIAN_START
import math
from scipy.ndimage import rotate
import calendar
from tabulate import tabulate
from matplotlib.patches import Arc
import matplotlib​.pypl​ot as plt
from matplotlib​.colo​rs import LinearSegmentedColormap
import matplotlib​.ima​ge as mpimg
from matplotlib.offsetbox import OffsetImage, 
AnnotationBbox
from PIL import Image
import requests
import io # Import io to handle the image data in 
memory

# Load planetary ephemeris data
planets = load(‘de421​.b​sp’)
earth = planets[‘earth’]
sun = planets[‘sun’]
moon = planets[‘moon’]
h_maghrib = 0 # Maghrib hour
m_maghrib = 0 # Maghrib minute

# Initialize time scale and ephemeris
ts = load.timescale()
eph = api​.lo​ad(‘de421​.b​sp’)

# Set observation location and time parameters
Lokasi = “Banda Aceh, Indonesia”
lat_titik1 = 5.548290 # Latitude of observation point

http://www.skyfield.api
http://www.skyfield.api
http://www.skyfield.api
http://www.matplotlib.pyplot
http://www.matplotlib.colors
http://www.matplotlib.image
http://www.de421.bsp
http://www.api.load
http://www.de421.bsp
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lon_titik1 = 95.323753 # Longitude of observation 
point
tz = 7 # Timezone offset (UTC+7)
year = 2025 # Year of observation
month = 5 # Month of observation
day = 27 # Day of observation

# Create observer location object
location_titik1 = wgs84​.latl​on(lat_titik1 * N, lon_
titik1 * E)
observer_titik1 = eph[‘Earth’] + location_titik1
print(observer_titik1)

def settime(year, month, day, observer_titik, x):
“““Calculate setting time of celestial body with 
timezone adjustment”““
# Set time range for search (current day to next day)
t0 = ts​.u​tc(year,month,day)
t1 = ts​.u​tc(year, month,day+1)

# Find setting time of celestial body x
t,y = almanac.find_settings(observer_titik, x, t0, t1)

# Extract UTC time components
​​​​​h_set​_tran​sit_n​otz,m​_set_​trans​it_no​tz,s_​set_t​ransi​
t_not​z = (int(​t​.utc​​.h​our​)),(i​nt(t.​​utc​.m​​i​nute​)),(i​
nt(t.​​utc​.s​​e​cond​))

# Convert to decimal hours and add timezone offset
time_set = (h_set_transit_notz + ((m_set_transit_
notz) / 60 + s_set_transit_notz / 3600))+tz

# Convert back to hours, minutes, seconds
h_set, d = divmod(time_set, 1)
h_set = int(h_set)
m_set, s = divmod(d * 60, 1)
m_set = int(m_set+1+4/60) # Add small adjustment
s_set = int(s * 60)
# Handle overflow in seconds
if s_set >= 60:

m_set += s_set // 60
s_set = s_set % 60

# Handle overflow in minutes
if m_set >= 60:

http://www.wgs84.latlon
http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second


﻿11  •  Lunar Crescent Observation Data Visualization  181

h_set += m_set // 60
m_set = m_set % 60

# Ensure hours wrap around a 24-hour clock
h_set = h_set % 24
waktu_terbenam = f”{h_set}:{m_set:02}:{s_set:02}”

return waktu_terbenam

# Calculate sunset time
Objek = ‘Matahari’
sun_set = settime(year, month, day, observer_titik1, 
sun)

# Calculate moonset time
Objek = ‘Bulan’
moon_set = settime(year, month, day, observer_titik1, 
moon)

# Set Julian calendar cutoff for historical dates
ts.julian_calendar_cutoff = GREGORIAN_START
location = Topos(latitude_degrees=lat_titik1, 
longitude_degrees=lon_titik1, elevation_m=1)

def settime(year, month, day, observer_titik, x):
“““Alternative version that returns hours and 
minutes separately”““
# Similar to previous function but returns numeric 
values
t0 = ts​.u​tc(year,month,day)
t1 = ts​.u​tc(year, month,day+1)
t,y = almanac.find_settings(observer_titik, x, t0, 
t1)
​​​​​h_set​_tran​sit_n​otz,m​_set_​trans​it_no​tz,s_​set_t​ransi​
t_not​z = (int(​t​.utc​​.h​our​)),(i​nt(t.​​utc​.m​​i​nute​)),(i​
nt(t.​​utc​.s​​e​cond​))
time_set = (h_set_transit_notz + ((m_set_transit_
notz) / 60 + s_set_transit_notz / 3600))

h_set, d = divmod(time_set, 1)
h_set = int(h_set)
m_set, s = divmod(d * 60, 1)
m_set = int(m_set+1+4/60)
s_set = int(s * 60)

http://www.ts.utc
http://www.ts.utc
http://www.t.utc.hour
http://www.t.utc.minute
http://www.t.utc.second
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if s_set >= 60:
m_set += s_set // 60
s_set = s_set % 60

if m_set >= 60:
h_set += m_set // 60
m_set = m_set % 60

h_set = h_set % 24
waktu_terbenam = f”{h_set}:{m_set:02}:{s_set:02}”

return h_set,m_set

# Get sunset time in numeric format
hsunset,msunset = settime(year, month, day, observer_
titik1, sun)

# Create observation location object
boston = earth + Topos(latitude_degrees=lat_titik1, 
longitude_degrees=lon_titik1, elevation_m=0)

# Calculate sun position at sunset
sun_astro = boston​.​at(ts​.u​tc((year), (month), (day), 
(hsunset), (msunset))).observe(sun)
sun_app = sun_astro.apparent()
sun_alt, sun_az, sun_distance = sun​_app​.al​taz()

# Calculate moon position at sunset
moon_astro = boston​.​at(ts​.u​tc((year), (month), (day), 
(hsunset), (msunset))).observe(moon)
moon_app = moon_astro.apparent()
moon_alt, moon_az, moon_distance = moon​_app​.al​taz()

# Calculate differences between moon and sun positions
beza_altitud_bulan_matahari = abs(moon_alt.degrees-
sun_alt.degrees)
daz = abs(moon_az.degrees-sun_az.degrees)
str_date = f’{day}/{month}/{year}’

# Store observation data
altitud_bulan = moon_alt.degrees
elongasi = sun_a​pp.se​parat​ion_f​rom(m​oon_a​pp).d​egree​s

# Prepare data for table display
data = [[“Date”, str_date],

http://www.boston.at
http://www.ts.utc
http://www.sun_app.altaz
http://www.boston.at
http://www.ts.utc
http://www.moon_app.altaz
http://www.sun_app.separation_from
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[“Location”, Lokasi],
[“Sunset Time”, sun_set],
[“Moonset Time”, moon_set],
[“Moon Altitude”, altitud_bulan],
[“Elongation”, elongasi],

]

col_names = [“Moon-Sun Data”, “Value”]

# Create formatted table
data_table = (tabulate(data, headers=col_names))

# Create visualization figure
fig, ax = plt.subplots(figsize=(20,10))

# Draw horizon line
horizon_angles = np.linspace(0, 360, 720)
horizon_altitudes = np.zeros_like(horizon_angles)
ax​.pl​ot(horizon_angles, horizon_altitudes, 
color=‘black’, linestyle=‘-’, linewidth=1)

# Get sun and moon positions in degrees
sun_az = sun_az.degrees
sun_alt = sun_alt.degrees
moon_az = moon_az.degrees
moon_alt = moon_alt.degrees

arcl = elongasi
Location = Lokasi
month_name = calendar.month_name[month]

# Plot sun position
ax.scatter(sun_az, sun_alt, color=‘orange’, 
label=‘Sun’, zorder=10, s=900)
ax.set_xlabel(‘Azimuth (degrees)’)
ax.set_ylabel(‘Altitude (degrees)’)
ax.set_title(f’New Moon Observation Data for {day} 
{month_name} {year}\nObservation Location: 
{Location}’)

# Set plot limits based on sun-moon positions
xlim_max = max(sun_az − (daz * 2), sun_az + (daz * 2))
xlim_min = min(sun_az − (daz * 2), sun_az + (daz * 2))
ax.set_xlim((xlim_min, xlim_max))
ax.set_ylim((sun_alt − 2), (moon_alt + 5))

http://www.ax.plot
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# Calculate angle for moon crescent orientation
opposite = moon_alt − sun_alt
adjacent = (moon_az − sun_az)
angle_rad = math.atan2(opposite, adjacent)
angle_degrees = (math.degrees(angle_rad))

# Load and rotate crescent moon image
image_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1ZF​bJ5p​WYv3​ZE4S​Y50R​me7w​8iej​zKRik4”
response = requests​.g​et(image_url)
response.raise_for_status()
crescent_img = Image​.op​en(io.BytesIO(response.
content))
rotated_img = crescent​_img​.rot​ate(angle_degrees)

# Add rotated moon image to plot
imagebox = OffsetImage(rotated_img, zoom=0.03)
ab = AnnotationBbox(imagebox, (moon_az, moon_alt), 
frameon=False)
ax.add_artist(ab)

# Create sky background gradient
sky = LinearSegmentedColormap.from_list(‘sky’, 
[‘blue’,’white’, ‘yellow’, ‘orange’])
extent = ax.get_xlim() + ax.get_ylim()
ax​.imsh​ow([[0, 0], [1, 1]], cmap=sky, 
interpolation=‘bicubic’, extent=extent)

# Visualization of elongation criteria (6.4° 
semicircle)
kriteria_elongasi = 6.4
circle_radius = kriteria_elongasi
sun_center_x = sun_az
sun_center_y = sun_alt
radius = kriteria_elongasi
x1 = sun_az-kriteria_elongasi
x2 = sun_az+kriteria_elongasi

# Calculate angles for semicircle
arccos_value_start_angle = np​.arcc​os(((x1 − sun_
center_x) / radius))
arccos_value_end_angle = np​.arcc​os(((x2 − sun_
center_x) / radius))

if np​.is​​​nan(n​​p​.arc​​​cos((​arcco​s_val​ue_st​art_a​ngle)​)):
start_angle = 0.000001

https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
https://drive.google.com/uc?export=download&id=1ZFbJ5pWYv3ZE4SY50Rme7w8iejzKRik4
http://www.requests.get
http://www.Image.open
http://www.crescent_img.rotate
http://www.ax.imshow
http://www.np.arccos
http://www.np.arccos
http://www.np.isnan
http://www.np.arccos
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else:
start_angle = 180 
− np.degrees(arccos_value_start_angle)

if np​.is​​​nan(n​​p​.arc​​​cos((​arcco​s_val​ue_en​d_ang​le)))​:
end_angle = 180+0.000001

else:
end_angle = 180 
− np.degrees(arccos_value_end_angle)

# Draw semicircle around sun position
semicircle_patch = Arc((sun_center_x, sun_center_y), 2 
* radius, 2 * radius,

theta1=start_angle, theta2=end_angle, 
fill=False, color=‘blue’, 
linestyle=‘--’)

​​ax​.add_​patch​(semi​circl​e_pat​ch)

# Visualization of altitude criteria (3° line)
kriteria_altitude = 3
horizontal_line_y = kriteria_altitude
x1 = 0
x2 = sun_az-kriteria_elongasi
​​ax​​.hlin​​​es(y=​horiz​ontal​_line​_y, xmin=x1, xmax=x2, 
color=‘red’, linestyle=‘--’)

x11 = sun_az+kriteria_elongasi
x22 = 360
​​ax​​.hlin​​​es(y=​horiz​ontal​_line​_y, xmin=x11, xmax=x22, 
color=‘red’, linestyle=‘--’)

# Load and add logo
logo_url = “https://drive​.google​.com​/uc​?export​
=download​&id​=1​_HEq​0C3b​v33i​54Hl​brJK​D4Zm​dxap8Q8a”
response = requests​.g​et(logo_url)
response.raise_for_status()
logo_img = Image​.op​en(io.BytesIO(response.content))
logo_box = OffsetImage(logo_img, zoom=0.1)
logo_ab = AnnotationBbox(logo_box, (xlim_max − 2.5, 
sun_alt - 1), frameon=False)
ax.add_artist(logo_ab)

# Draw moon altitude line and label
ax​.vlin​es(x=moon_az, ymin=0, ymax=moon_alt, 
color=‘blue’, linestyle=‘--’)

http://www.np.isnan
http://www.np.arccos
http://www.ax.hlines
http://www.ax.hlines
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
https://drive.google.com/uc?export=download&id=1_HEq0C3bv33i54HlbrJKD4Zmdxap8Q8a
http://www.requests.get
http://www.Image.open
http://www.ax.vlines
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ax​.te​xt(moon_az+0.3, moon_alt/2, f’Moon Altitude: 
{moon_alt:.2f}°’, color=‘blue’, fontsize=10, 
ha=‘left’)

# Draw elongation line and label
ax​.pl​ot([moon_az, sun_az], [moon_alt, sun_alt], 
color=‘green’, linestyle=‘--’)
ax​.te​xt(sun_az+2, arcl/2-1, f’Moon Elongation: 
{arcl:.2f}°’, color=‘green’, fontsize=10, ha=‘left’)

# Determine visibility based on MABIMS criteria
if moon_alt >= kriteria_altitude and arcl >= 
kriteria_elongasi:

kenampakan = “Visible”
nama_kriteria = “MABIMS Criteria Met”

else:
kenampakan = “Not Visible”
nama_kriteria = “MABIMS Criteria Not Met”

# Add information box
info_text = (f’Moon Data:\n’

f’Altitude: {moon_alt:.2f}°\n’
f’Elongation: {arcl:.2f}°\n’
f’Visibility: {kenampakan}\n’
f’Criteria: {nama_kriteria}’)

ax​.te​xt(xlim_max-7, moon_alt+3.5, info_text,
fontsize=12, ha=‘left’, va=‘top’,
​​bb​ox=di​ct(fa​cecol​or=‘w​hite’​, alpha=0.8))

# Add horizon and criteria labels
ax​.te​xt(xlim_min+1, 0.1, “Horizon”, fontsize=10, 
ha=‘left’)
ax​.te​xt(xlim_min+1, kriteria_altitude+0.1, “MABIMS 
2021 Criteria”, fontsize=10, ha=‘left’)

plt​.sh​ow()

# Print data table
print(‘\n’)
print(data_table)

The result of the above code is shown in Figure 11.9. ​

http://www.ax.text
http://www.ax.plot
http://www.ax.text
http://www.ax.text
http://www.ax.text
http://www.ax.text
http://www.plt.show
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Exercise 2

Visualize new moon observation data for June 25, 2025, on Observation 
Location: Singapore, Lat: 1.290270 N, 103.851959 E, UTC+8.

Exercise 3

Visualize new moon observation data for September 22, 2025, on Observation 
Location: Kuala Lumpur, Malaysia, Lat: 3.140853 N, 101.693207 E, UTC+8.

Exercise 4

Visualize new moon observation data for October 21, 2025, on Observation 
Location: Bandar Seri Begawan, Brunei, Lat: 4.890278 N, 114.942222 E, 
UTC+8.

Exercise 5

Visualize new moon observation data for December 20, 2025, on Observation 
Location: Naypyidaw, Myanmar, Lat: 19.7475 N, 96.115 E, UTC+6.5.

FIGURE 11.9  Visualization of sun position at Banda Acheh Indonesia.
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Conclusion

The fusion of Python programming and Islamic Astronomy presented in this 
textbook is not just a convergence of science and faith; it reflects the long-
standing Islamic tradition that values precision, observation, and knowledge. 
Islamic Astronomy (Ilmu Falak) has historically served as a critical field to 
determine acts of worship such as prayer times, Qibla direction, and the Hijri 
calendar. In modern times, the use of computational tools such as Python 
enhances the accuracy, reproducibility, and clarity of these determinations.

Throughout this book, we have systematically explored how Python can 
be utilized to model and compute key astronomical phenomena relevant to 
Islamic practices. Beginning with fundamental programming skills, we built 
up to advanced computations including solar transit, shadow length analysis, 
and lunar crescent visibility prediction. We introduced the Skyfield library as 
a core tool, highlighting its ability to interface directly with astronomical data 
and simulate celestial motion with high precision.

In Chapters 5 through 7, we demonstrated how to calculate the direction 
of the Qibla and determine prayer times such as Zuhur, Asar, Maghrib, Isya’, 
Syuruk, and Subh. These calculations were grounded in real astronomical 
parameters such as solar altitude, Equation of Time, and observer location. We 
emphasized the importance of considering elevation, atmospheric refraction, 
and solar declination, factors often overlooked in manual estimations. We also 
provided visualizations to help learners see the underlying logic and move-
ment of the sun in relation to the Earth’s surface.

In Chapter 8, we shifted to moonsighting, a subject of both scientific and 
sociological significance in the Muslim world. Here, readers were introduced 
to methods of determining the moon’s altitude, age, elongation, and azimuth, 
all of which play crucial roles in validating the visibility of the lunar crescent 
(hilal). Through case studies and real-world examples, readers learned how 
to extract meaningful data that contributes to hilal visibility reports and the 
formulation of Hijri calendars.

Chapters 9 and 10 focused on visualization techniques that support under-
standing and teaching of Falak. With Python’s graphical capabilities, learners 
could plot Qibla directions, solar azimuths, and sun positions at various prayer 
times. These visual outputs not only serve pedagogical purposes but also help 
in validating and communicating data effectively, particularly in official or 
community-level Falak determinations.

Python for Islamic Astronomy Conclusion
10.1201/9781003649120-12
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Conclusion

Finally, in Chapter 11, we explored lunar crescent observation data visu-
alization using real observation scenarios from Malaysia and Indonesia. 
These practical examples tied together the themes of data, visibility, and 
Islamic calendar accuracy, showing that observation and computation must go 
hand-in-hand.

By combining modern computational skills with classical Islamic astro-
nomical knowledge, this textbook aspires to produce a new generation of 
Muslim scholars, students, and professionals who are confident in applying 
scientific methods to religious obligations. This interdisciplinary skill set not 
only enhances one’s understanding of Islamic rituals but also contributes to 
broader scientific literacy and critical thinking.

It is our hope that this book serves as a gateway for more Muslims, par-
ticularly students in higher education and religious institutions, to explore 
Islamic Astronomy as both an academic and spiritual pursuit. As we embrace 
the tools of modern science, we continue the legacy of great Muslim astrono-
mers such as Al-Biruni, Al-Khwarizmi, and Al-Tusi, who exemplified the har-
mony between reason, revelation, and observation.

May this book inspire a deeper love for knowledge, a renewed commit-
ment to precision in worship, and a stronger integration of technology in the 
service of our faith and community.

Wallāhu a‘lam



(9a 1  Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com/
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